
A Computational Approach to theQuadratic Sieve

WILL DENTON, AIDEN CROWE, and MAXWELL LIN, Duke University, USA

The quadratic sieve is a factoring algorithm that uses the properties of exponentiation over (Z/𝑛Z) to discover
the factors of a composite number 𝑛. The basic principle states that if 𝑥2 ≡ 𝑦2 (mod 𝑛) and 𝑥 . ±𝑦 (mod 𝑛),
then 𝑛 must be composite and gcd(𝑥 − 𝑦, 𝑛) is a nontrivial factor of 𝑛 (i.e., not 1 or 𝑛). The quadratic sieve

algorithm uses a factor base for some bound 𝐵, consisting of all primes 𝑝 such that 𝑝 ≤ 𝐵. Then, through trial

and error, this factor base can be used to find an 𝑥,𝑦 that satisfies the above principle for a given composite

number.

1 INTRODUCTION TO THE QUADRATIC SIEVE

The quadratic sieve algorithm [5] consists of four main steps. In implementation, many of these

steps are broken down further, but the underlying structure is outlined below.

(1) Choose a smoothness bound 𝐵. This will be the upper bound on primes considered during

the quadratic sieve algorithm. The factor base is the set of primes { 𝑝 ∈ Z | 𝑝 ≤ 𝐵 } with
size 𝜋 (𝐵).

(2) Choose a random integer 𝑥 and calculate 𝑥2 (mod 𝑛). If 𝑥2 (mod 𝑛) is B-smooth, meaning

that 𝑥2 ≡∏
𝑝
𝑞𝑖
𝑖

where all 𝑝𝑖 are in the factor base, add 𝑥 to a list.

(3) Once this list has 𝜋 (𝐵) + 1 elements, use linear algebra to find a product of the list elements

such that all exponents of the prime factors are even. Call this product 𝑎2.

(4) Finally, define 𝑏 so that 𝑏2 =
∏

𝑝
𝑞𝑖
𝑖

for all primes of each 𝑥𝑖 used to construct 𝑎2. If 𝑎 .
𝑏 (mod 𝑛), 𝑛 is composite and gcd(𝑎 − 𝑏, 𝑛) is a factor of 𝑛. Otherwise, the process should
be repeated for a different pair of 𝑎, 𝑏.

2 IMPLEMENTATION OF THE QUADRATIC SIEVE

2.1 Choosing the Bound 𝐵 and the Sieve Size 𝑆

In addition to 𝑛, the number to be factored, we must choose two other parameters to initialize the

quadratic sieve: 𝐵, the smoothness bound as defined above, and 𝑆 , the size of the sieve we want

to create. Both of these quantities scale with 𝑛, where higher values of 𝐵 and 𝑆 would mean more

computations, but more rows in our matrix for the linear algebra step. If 𝐵 and 𝑆 are set too low,

we might not be able to find 𝜋 (𝐵) + 1 elements for our matrix, in which case we would not be able

to factor the number. Therefore, to optimize for efficiency, we set 𝐵 and 𝑆 by hand for each number

we factor, following a process of trial and error.

Ideally, both of these parameters could be dynamically adjusted to optimize performance, or

we could have created an equation to output these parameters based on the size of 𝑛, but that would

have required additional experimentation. Instead, we chose to focus on the computing aspects of

our program.

2.2 Finding Primes Less Than 𝐵

To find primes less than some bound 𝐵 we can use a method called the Sieve of Eratosthenes. In

order to create a list a primes we start with a list of all numbers less than 𝐵. Next, we pick the

Authors’ address: Will Denton; Aiden Crowe; Maxwell Lin, Duke University, Durham, North Carolina, USA.

2 Will Denton, Aiden Crowe, and Maxwell Lin

smallest prime, 2, and we mark 2 as prime and all numbers that are multiples of 2 as not prime

(4, 6, 8, . . .). We then pick the next smallest number that is prime, 3, and repeat the process. A small

optimization we implemented is that we only need to check primes less than

√
𝐵 as all primes

greater than

√
𝐵 will be marked as primes already. Additionally, all composite numbers 𝑐 such that

𝑐 >
√
𝐵 must have a prime factorization that includes at least one prime 𝑝 ≤

√
𝐵.

2.3 Selecting the Factor Base

To improve on the quadratic sieve as outlined in Section 1, we implemented an optimization to find

𝐵-smooth factors faster than trial division. This optimization, which is often known as "sieving,"

is described throughout the rest of this section, and it imposes restrictions on our factor base.

Specifically, this algorithm will require 𝑛 to have a square root mod 𝑝 for all of the primes in our

factor base.

2.3.1 Quadratic Residue. To ensure that

√
𝑛 (mod 𝑝) is well-defined, we will use the idea of a

quadratic residue. An integer 𝑞 is said to be a quadratic residue mod 𝑝 if it satisfies the following

equation for some integer 𝑥 (meaning 𝑞 is congruent to some square mod 𝑝) [4]:

𝑥2 ≡ 𝑞 (mod 𝑝). (1)

Using this definition, we will select each prime 𝑝 in our factor base so that 𝑛 is a quadratic residue

mod 𝑝 .

For approximately half of the primes, 𝑛 will not be a quadratic residue. To filter out such primes,

we ensure that the following equation holds (the mathematical concepts to support this equation

are included in Section 4.1):

𝑛
𝑝−1
2 ≡ 1 (mod 𝑝). (2)

Once we have verified this for each prime, we can create our updated factor base of only primes

such that 𝑛 is a quadratic residue mod 𝑝 .

2.4 Creating the Sieve

Next, we need to generate our list of terms that we will use to try to factor 𝑛 (step 2 in the

introduction). When we do this, it is important that the square we use to generate each term is

larger than 𝑛, as otherwise we will gain no information. Therefore, for all 𝑥 up to 𝑆 (see Section 2.1),

we construct the sieve 𝑉𝑥 as

𝑉𝑥 = (𝑓 (1), 𝑓 (2), . . . , 𝑓 (𝑆 − 1), 𝑓 (𝑆)) with 𝑓 (𝑥) =
(
𝑥 +

⌈√
𝑛
⌉)2
− 𝑛 (3)

This equation uses (𝑥 +
⌈√

𝑛
⌉
)2 as one of the squares we will eventually check, and, as 𝑛 = (

√
𝑛)2 <

(
⌈√

𝑛
⌉
)2 < (𝑥 +

⌈√
𝑛
⌉
)2, this square is slightly greater than 𝑛 for small 𝑥 values. This ensures that

𝑓 (𝑥) is small relative to 𝑛. We will eventually select for the elements of 𝑉𝑥 that are B-smooth, a

property that is more likely to occur for small values of 𝑓 (𝑋). At larger 𝑆 values, and subsequently

larger 𝑥 values, it becomes more efficient to find B-smooth numbers by increasing the size of the

factor base instead of increasing the size of the sieve.

In our implementation, we found that it was faster to use the log method outlined in the textbook

so instead we opted to make the sieve contain the log of the numbers. This log sieve uses the

function

𝑙 (𝑥) = ln

(
(𝑥 +

⌈√
𝑛
⌉
)2 − 𝑛

)
. (4)

A Computational Approach to theQuadratic Sieve 3

This log method functions very similarly to the first sieve, but has the computational benefit of

allowing us to do addition and subtraction operations in place of multiplication and division. Since

these operations constitute the bulk of our computation, it is more efficient to calculate the logs

one time as we create our sieve than to do repeated multiplications and divisions.

2.5 Sieve to find B-smooth Numbers

Once we have generated our sieve, we need to ensure each of the numbers within are B-smooth.

To do this, we will first have to calculate the modular square root of 𝑛 for each prime in our factor

base. Since we ensured 𝑛 is a quadratic residue mod 𝑝 for each prime, we know that the modular

square root exists, and to find it we use the Tonelli-Shanks algorithm.

2.5.1 Tonelli-Shanks. The algorithm begins by finding𝑄, 𝑆 ∈ Z such that𝑄 is oddwhere 𝑝−1 = 𝑄2
𝑆
.

Then, we find 𝑧 ∈ Z where 𝑧 is not a quadratic residue mod 𝑝 using Euler’s Criterion. Finally,

we establish our loop variables, 𝑀,𝑐, 𝑡, 𝑅 so that 𝑀 ← 𝑆 , 𝑐 ← 𝑧𝑄 , 𝑡 ← 𝑛𝑄 , and 𝑅 ← 𝑛
𝑄+1
2 . The

Tonelli-Shanks algorithm then proceeds as follows:

Algorithm 1 Tonelli-Shanks

1: procedure Tonelli-Shanks(𝑛, 𝑧, 𝑄 , 𝑆 , 𝑝)
2: 𝑀 ← 𝑆

3: 𝑐 ← 𝑧𝑄 (mod 𝑝)
4: 𝑡 ← 𝑛𝑄 (mod 𝑝)
5: 𝑅 ← 𝑛

𝑄+1
2 (mod 𝑝)

6: loop
7: if t = 0 then
8: return 0

9: else if t = 1 then
10: return 𝑅

11: 𝑡𝑖 ← 𝑡

12: for 𝑖 ← 1 to𝑀 do
13: 𝑡𝑖 ← 𝑡2𝑖 (mod 𝑝)
14: if 𝑡𝑖 ≡ 1 (mod 𝑝) then
15: 𝑏 ← 𝑐2

𝑀−𝑖−1

16: 𝑀 ← 𝑖

17: 𝑐 ← 𝑏2 (mod 𝑝)
18: 𝑡 ← 𝑡𝑏2 (mod 𝑝)
19: 𝑅 ← 𝑅𝑏 (mod 𝑝)

The above process will return 𝑅 such that 𝑅2 ≡ 𝑛 (mod 𝑝), but −𝑅 (mod 𝑝) is also a valid square

root. If 𝑛 is a known quadratic residue mod p, it is guaranteed to work, as shown in the proof in

Section 4.2. Through each iteration of the loop on line 6, 𝑅2 ≡ 𝑡𝑛 (mod 𝑝), meaning that once

𝑡 ≡ 1 (mod 𝑝), then we have found 𝑅 =
√
𝑛.

Note, as we sieve to find B-smooth numbers, we will be using both the simple calculated square

root of n (i.e.,

⌈√
𝑛
⌉
) and the modular square root of 𝑛 (mod 𝑝) obtained via the Tonelli-Shanks

algorithm. For clarity, we will define 𝑘 =
⌈√

𝑛
⌉
to be the constant calculated square root, and use√

𝑛 to denote the modular square root for a given prime, as this value will vary for each calculation.

4 Will Denton, Aiden Crowe, and Maxwell Lin

Now, to find the entries in our sieve that are B-smooth, we check that they are divisible by each

prime in our factor base with

(𝑥 + 𝑘)2 − 𝑛 ≡ 0 (mod 𝑝) =⇒ 𝑥 ≡
√
𝑛 − 𝑘 (mod 𝑝). (5)

We can calculate 𝑥 for each prime in our factor base, which will give the least number in our

sieve such that 𝑝 | 𝑥 . Due to the construction of our sieve, 𝑝 similarly divides the numbers in

the sieve 𝑥, 𝑥 + 𝑝, 𝑥 + 2𝑝, In the typical algorithm, we would then divide out each of these

values in our list by 𝑝 . However, as 𝑉𝑥 contains log values, we compute 𝑉𝑥 (𝑥𝑖) = 𝑉𝑥 (𝑥𝑖) − ln(𝑝) for
𝑥𝑖 = 𝑥, 𝑥 + 𝑝, 𝑥 + 2𝑝,

2.6 Create the Exponent Vector Matrix Mod 2

Now that we have performed the sieving operation, each entry in the sieve with any prime factors

within our factor base has been reduced to only primes outside of our factor base. If any entry in𝑉𝑥
is B-smooth it will be equal to 1 in the non-log implementation, or 0 = ln 1 in the log implementation.

All other entries can be discarded, as they are not B-smooth.

For the remaining entries, we then factor by trial division, and create a new vector mod 2 for

each entry of the corresponding exponents for each prime in our factor base. All such vectors are

concatenated vertically to form a 2-dimensional matrix mod 2, where a value of 1 corresponds to

an odd exponent for that prime, and a value of 0 corresponds to an even exponent. By finding the

linear dependencies of the rows of this matrix, we can create a list of squares whose prime factors

mod n multiply to be a square.

2.7 Perform Row Reduction Mod 2 to Find Linear Dependencies

To perform Gaussian elimination mod 2, we use the algorithm of Koç and Arachchige [3]. For an

𝑛 ×𝑚 matrix, this Gaussian elimination algorithm requires𝑚2𝑛 +𝑚2 −𝑚 bit operations.

Algorithm 2 Row reduction mod 2

1: for 𝑗 = 1, 2, . . . ,𝑚 do
2: Search for 𝐴𝑖 𝑗 = 1 in column 𝑗

3: if found then
4: Mark row 𝑖

5: for 𝑘 = 1, 2, . . . , 𝑗 − 1, 𝑗 + 1, . . . ,𝑚 do
6: if 𝐴𝑖𝑘 = 1 then
7: Add column 𝑗 to column 𝑘 (mod 2)

All unmarked rows are linear dependencies.

2.8 Use gcd to Find Factors

Now that we have a set of linear dependencies, we select a dependency, and take the product of

each number in it and call this product 𝑎2. Similarly, we can take the product of the prime factors

for each element in the dependency and call this 𝑏2. This process produces two values 𝑎 and 𝑏

where 𝑎2 ≡ 𝑏2 (mod 𝑛) such that 𝑎 . 𝑏 (mod 𝑛). We can then use these values to calculate a factor

of 𝑛. The basic principle states that gcd(𝑎 −𝑏, 𝑛) is a factor of 𝑛, and to calculate this, the Euclidean
algorithm can be used. If this factor is trivial (1 or 𝑛), the algorithm is repeated with a different

value for 𝑎 and 𝑏 from our linear dependencies.

A Computational Approach to theQuadratic Sieve 5

3 PERFORMANCE AND LANGUAGE

3.1 Programming Implementation

In our programs, we exactly implemented the math outlined above. For ease of programming, we

first implemented the quadratic sieve in Python using the NumPy library.
1
To improve performance,

we translated the Python program to C.
2
In our C implementation, we used GMP [1], a library for

arbitrary precision arithmetic. This means that our program supports any choice of 𝑛, 𝐵, 𝑆 ∈ Z+
assuming that you have enough time and computer memory. Since Python is an interpreted language,
there is more overhead executing the Python code compared to executing the equivalent compiled
C code. In our tests, the C implementation was roughly 50-100 times faster than the equivalent

Python implementation.

We compiled the C executable using the -Ofast flag which enables extreme compiler optimizations

which disregard strict standards compliance [2]. For example, the compiler can make aggressive

assumptions about floating-point arithmetic that can lead to faster code with the risk of no longer

conforming to IEEE standards. We did not find any negative effects from enabling these aggressive

compiler optimizations.

3.2 Computational Fixes and Improvements

The main difference between our code and the math outlined above was fixing issues related to

floating-point numbers. When the log of a large int is calculated with only 64 bits of precision,

there is a lot of accumulated error in the result. This caused the sieve to not find some B-smooth

numbers properly. Additionally, when calculating the log of numbers > 10
16
, it could not calculate

the log properly and the sieve could not factor numbers > 90 bits. We addressed this issue in the C

code by doing the log calculations on 128-bit floats; however, this was not implemented in Python

so we can only calculate up to 90-bit numbers in the Python version of the code.

After performance testing, we found that the get_sieve_log function is both a bottleneck and

easily parallelizable. Therefore, we used multithreading to split up the work for generating the

sieve. This optimization further improved performance linearly with respect to the number of

threads. Similar techniques can be applied to other parts of the program that contain independent,

computationally intensive tasks.

3.3 Performance

Our implementation can factor integers up to 40 digits long within a minute. See Table 1 for the

performance of our implementation on other integers. See Table 2 for our computer specifications.

See the appendix for sample output.

1
See https://github.com/Will-Denton/QuadSieve/blob/final/quadratic_sieve.py for our Python implementation.

2
See https://github.com/Will-Denton/QuadSieve/blob/final/quadratic_sieve.c for our C implementation.

https://github.com/Will-Denton/QuadSieve/blob/final/quadratic_sieve.py
https://github.com/Will-Denton/QuadSieve/blob/final/quadratic_sieve.c

6 Will Denton, Aiden Crowe, and Maxwell Lin

𝑛 Digits 𝐵 𝑆 Time

130607 6 50 1.0 × 103 1ms

29223973 8 200 1.5 × 104 1ms

7067947793 10 500 1.0 × 104 1ms

736055622283 12 600 1.0 × 104 2ms

5479839591439397 16 1000 3.0 × 105 8ms

92905709270744788219 20 1500 3.7 × 105 13ms

60381558672724747724459 23 2500 1.5 × 106 25ms

4212175936999023767107554923 28 5000 2.5 × 107 423ms

6119490005682428418384261292866412370269 40 30000 1.5 × 109 31.3s

3744843080529615909019181510330554205500926021947 49 50000 2.0 × 109 NA

Table 1. Quadratic Sieve Performance for Varying 𝑛, 𝐵, and 𝑆 . We did not have enough memory to factor the
49-digit integer.

CPU Memory

Intel i7 (14 cores) 32 GB

Table 2. Computer Specifications

4 MATHEMATICAL EXTENSION

4.1 Euler’s Criterion andQuadratic Residues

When we winnow down our factor base, we assume that 𝑛 and 𝑝 are coprime, as 𝑛 will likely be

comprised of large primes, and 𝑝 is below some smoothness bound. From this assumption, we can

use Fermat’s Little Theorem, which states that if 𝑛 and 𝑝 are coprime, 𝑛𝑝−1 ≡ 1 (mod 𝑝). This leads
naturally to a duality known as Euler’s Criterion to check whether some number 𝑛 is a quadratic

residue mod 𝑝 .

Specifically, Euler’s criterion states that for some odd prime 𝑝 and 𝑛 coprime to 𝑝 ,

𝑛
𝑝−1
2 ≡

{
1 (mod 𝑝) if ∃𝑥 ∈ Z such that 𝑥2 ≡ 𝑛 (mod 𝑝)
−1 (mod 𝑝) otherwise.

(6)

This criterion follows from Fermat’s Little Theorem, which states

𝑛𝑝−1 ≡ 1 (mod 𝑝) =⇒ 𝑛𝑝−1 − 1 ≡ (𝑛
𝑝−1
2 − 1) (𝑛

𝑝−1
2 + 1) ≡ 0 (mod 𝑝). (7)

From this equivalence, we know that every number in (Z/𝑝Z)∗ must satisfy one of the two cases

of the Euler criterion.

If we take some generator 𝑔 for (Z/𝑝Z)∗, the elements of (Z/𝑝Z)∗ must be represented by 𝑔𝑘

for 0 ≤ 𝑘 < 𝑝 − 1. Of these values for 𝑘 , half are even and can be written as 𝑘 = 2𝑚.

𝑔𝑘 ≡ 𝑔2𝑚 ≡ (𝑔𝑚)2 = 𝑎 (mod 𝑝) (8)

Therefore at least half of the elements of (Z/𝑝Z)∗ are quadratic residues, meaning there are at least

𝑝−1
2

quadratic residues. However, as 𝑝 − 𝑔𝑚 ≡ −𝑔𝑚 is also a valid root, and 𝑔𝑚 . −𝑔𝑚 (mod 𝑝) for
𝑝 ≠ 2, each quadratic residue has two roots. Therefore, there can be at most

𝑝−1
2

unique quadratic

A Computational Approach to theQuadratic Sieve 7

residues without overlapping roots. This means that exactly half of the elements in (Z/𝑝Z)∗ are
quadratic residues, and the other half are quadratic non-residues.

For a quadratic residue 𝑛 (mod 𝑝),

𝑛
𝑝−1
2 − 1 ≡ (𝑥2)

𝑝−1
2 − 1 ≡ 𝑥𝑝−1 − 1 ≡ 1 − 1 ≡ 0 (mod 𝑝). (9)

Therefore every quadratic residue must make the term 𝑛
𝑝−1
2 − 1 zero. As exactly half of the elements

of (Z/𝑝Z)∗ are residues, the other half must satisfy the non-residue case in Euler’s Criterion.

4.2 Tonelli-Shanks

Using the process for Tonelli-Shanks [6] as defined in Algorithm 1, we can show that for each loop

iteration, the following three loop invariants hold:

𝑐2
𝑀−1 ≡ −1

𝑡2
𝑀−1 ≡ 1

𝑅2 ≡ 𝑡𝑛.

(10)

The key principle behind Tonelli-Shanks is the third invariant. As we modify 𝑐, 𝑡, 𝑅, we continuously

search for an 𝑅 value that satisfies

√
𝑛 ≡ 𝑅 (mod 𝑝), and decrease our search area by decreasing

the possible values for the order of 𝑡 .

At the initialization step, the first two invariants should be obvious, as 𝑐 is constructed from

a non-residue, therefore 𝑐2
𝑀−1 ≡ (𝑧𝑄)2𝑀−1 ≡ 𝑧

𝑝−1
2 ≡ −1 (mod 𝑝) by Euler’s Criterion. The same

computation can be performed on 𝑡 to show that the second invariant holds at initialization. Finally,

as 𝑡 = 𝑛𝑄 at initialization, 𝑅2 ≡ (𝑛
𝑄+1
2)2 ≡ 𝑛𝑄+1 ≡ 𝑡𝑛 (mod 𝑝).

Now, for each iteration, the following hold for the updated values𝑀 ′, 𝑐′, 𝑡 ′, 𝑅′ of𝑀,𝑐, 𝑡, 𝑅:

𝑐′2
𝑀′−1 ≡ (𝑏2)2𝑖−1 ≡ 𝑐2𝑀−𝑖2𝑖−1 ≡ 𝑐2𝑀−1 ≡ −1

𝑡 ′2
𝑀′−1 ≡ (𝑡𝑏2)2𝑖−1 ≡ (𝑡2𝑖−1) (𝑐2𝑀−𝑖2𝑖−1) ≡ (𝑡2𝑖−1𝑐2𝑀−1 ≡ (−1) (−1) ≡ 1

(𝑡2
𝑖−1 ≡ −1 as 𝑡2𝑖 is the least power of 2 of 𝑡 equal to 1.)

𝑅′2 ≡ 𝑅2𝑏2 ≡ (𝑡𝑛)𝑏2 ≡ 𝑡 ′𝑛.

(11)

Therefore, the loop invariants hold for each iteration of the loop. As 𝑡2
𝑀−1 ≡ 1, there must be some

𝑖 that makes 𝑡𝑖 ≡ 1 (mod 𝑝). Therefore the inner loop will continue to run, and 𝑀 will decrease

with each iteration. As 𝑛
𝑝−1
2 ≡ 1 (mod 𝑝) by Euler’s Criterion, we are guaranteed to find an 𝑅 so

that 𝑅2 ≡ 𝑛 (mod 𝑝) from this algorithm, thereby giving us a value for

√
𝑛 (mod 𝑝).

REFERENCES

[1] 2024. The GNU MP Bignum Library. https://gmplib.org/

[2] 2024. Optimize Options (Using the GNU Compiler Collection (GCC)). https://gcc.gnu.org/onlinedocs/gcc/Optimize-

Options.html

[3] Çetin K. Koç and Sarath N. Arachchige. 1991. A fast algorithm for gaussian elimination overGF (2) and its implementation

on the GAPP. J. Parallel and Distrib. Comput. 13, 1 (Sept. 1991), 118–122. https://doi.org/10.1016/0743-7315(91)90115-P

[4] Ben Lynn. [n. d.]. Number Theory - Quadratic Residues. https://crypto.stanford.edu/pbc/notes/numbertheory/qr.html

[5] Carl Pomerance. 2008. Smooth numbers and the quadratic sieve. (2008).

[6] Daniel Shanks. 1973. Five number-theoretic algorithms. Proceedings of the Second Manitoba Conference on Numerical
Mathematics (Winnipeg), 1973 (1973). https://cir.nii.ac.jp/crid/1572261550443913728

https://gmplib.org/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://doi.org/10.1016/0743-7315(91)90115-P
https://crypto.stanford.edu/pbc/notes/numbertheory/qr.html
https://cir.nii.ac.jp/crid/1572261550443913728

8 Will Denton, Aiden Crowe, and Maxwell Lin

A APPENDIX

A.1 Sample Output

Fig. 1. Sample output for the 40-digit number 6119490005682428418384261292866412370269.

	Abstract
	1 Introduction to the Quadratic Sieve
	2 Implementation of the Quadratic Sieve
	2.1 Choosing the Bound B and the Sieve Size S
	2.2 Finding Primes Less Than B
	2.3 Selecting the Factor Base
	2.4 Creating the Sieve
	2.5 Sieve to find B-smooth Numbers
	2.6 Create the Exponent Vector Matrix Mod 2
	2.7 Perform Row Reduction Mod 2 to Find Linear Dependencies
	2.8 Use gcd to Find Factors

	3 Performance and Language
	3.1 Programming Implementation
	3.2 Computational Fixes and Improvements
	3.3 Performance

	4 Mathematical Extension
	4.1 Euler's Criterion and Quadratic Residues
	4.2 Tonelli-Shanks

	References
	A Appendix
	A.1 Sample Output

