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Abstract—The Duke Robotics Club is proud to
present our AUVs for the 2025 RoboSub Compe-
tition: Oogway and Crush. Now in its third year,
Oogway returns with a new torpedo subsystem
and upgraded high-fidelity mounts. Our first
minibot, Crush, features a dual-capsule design
that incorporates key insights from Oogway
and other previous systems. Beyond hardware
advancements, we also migrated our 50,000+ line
codebase to ROS 2 and refactored core modules
for a fully robot-agnostic architecture. Rigorous
subsystem and integration tests ensure that both
AUVs operate as cohesive and reliable systems
at RoboSub 2025.

I. COMPETITION STRATEGY

Our strategic vision centers on core tasks, which
our robots are programmed to perform every run,
and one alternate task which may be completed
at the end of a successful run if more points are
necessary. Our core tasks are implemented with
multiple fail-safes to ensure reliability. Additionally,
our new minibot enables us to execute distinct tasks
in parallel — increasing overall throughput — or
concentrate efforts on a single, challenging task to
improve redundancy.

RoboSub’s design goals focus on four fundamen-
tal principles: movement, vision, manipulation, and
acoustic tracking. To accomplish our strategic vision
we chose to focus on 3 of 4 design goals: movement,
vision, and manipulation. This subset aligns with
our team’s strengths in controls, computer vision
(CV), and mechanics. Our focus on these goals
enables us to perform the gate, slalom, torpedo,
and return home tasks (our core tasks) reliably,

while still maintaining the flexibility to attempt the
octagon task (our alternate task) if needed.

(a) Oogway

(b) Crush

Fig. 1: Duke Robotics Club’s AUVs for RoboSub
2025

A. Collecting Data – Gate
The gate task must be completed by both Crush

and Oogway to initiate a run. To maximize reliabil-
ity for this required task, we employ a multimodal
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approach: our CV subsystem can detect the gate
from arbitrary angles and estimate the position
of symbols underneath. If CV fails to locate the
gate, the sonar subsystem provides an approximate
bearing. As a final fallback, our control system
can perform dead reckoning through the gate using
odometry and state estimates. In all cases, we ensure
traversal through the shark side of the gate.

In addition to the gate, Crush will perform both
the coin flip and style tasks to earn bonus points. At
RoboSub 2024, these tasks were reliably executed
by Oogway. Delegating them to Crush now reduces
sensor drift on Oogway and preserves its state-
estimation integrity for later objectives.

B. Navigate the Channel – Slalom

After Crush completes the gate task, we use
Crush’s downward-facing camera in combination
with our CV subsystem to find and track the path
marker. After navigating in the direction of the
slalom task, Crush uses its front-facing camera to
identify and navigate through the three sets of pipes.
Oogway will not attempt the Slalom task.

C. Tagging – Torpedoes

For the first time, the torpedo task is a core com-
ponent of our competition strategy. After Oogway
completes the gate task, we use its front-facing
camera and CV subsystem to detect the torpedo
board. We then compute the board’s normal vector
using sonar to align the vehicle head-on. Finally,
HSV filtering centers Oogway on the target opening
before launching the torpedo. We will first tag the
shark, then the sawfish.

D. Ocean Cleanup – Octagon

Due to limited reliability in our acoustic tracking
systems, we designate the octagon as our alternate
task. If additional points are needed at the end of
a run, Oogway will attempt to locate and surface
inside the octagon using a combination of acoustics
and sonar. Once Oogway completes its final core
task, it can activate its acoustics tracking algorithm
and performs wide sonar sweeps to estimate the
octagon’s location. Upon arrival, it uses its cameras
and CV subsystem to identify the trash table and the
two hanging images. Once centered above the table,
Oogway will surface inside the octagon. Because

this strategy is less reliable, we reserve it for the end
of a run to avoid surfacing outside the octagon and
prematurely ending Oogway’s run. As our actuators
are still in development, we will not attempt the
object manipulation portion of this task.

E. Drop a BRUVS – Bins

To focus on greater reliability for other tasks, we
will not attempt the bins task this year. At last year’s
competition, we were able to complete the bins task
with our new marker-dropper subsystem; however,
we found that navigation to the bins was challenging
and unreliable.

F. Return Home

The addition of the return home task as a new
final objective requires us to be strategic about
delegating tasks between our two robots. If Oogway
attempts the octagon task, there is a significant risk
it will surface outside the octagon and be unable
to attempt returning through the gate. Therefore,
to ensure reliable completion of this core task, we
delegate it to Crush, which will attempt it after
completing the slalom task. Crush will use the same
multimodal approach as in the initial gate task. If
Oogway either completes or aborts the octagon task
without surfacing, Oogway may also attempt the
return home task to increase our chance of securing
these points.

G. Inter-Vehicle Communication (IVC)

A key addition to our strategy this year is captur-
ing IVC points. With two fully operational AUVs
equipped with IVC modems, the robots can ex-
change messages throughout the run. Each time a
robot begins or completes a task, it transmits a
message to the other. After the run, both sets of
timestamped message logs will be submitted to the
judges to verify successful IVC.

H. Trade Offs Between Complexity and Reliability

Consistent with our strategic philosophy from last
year, we emphasize reducing system complexity
while maximizing reliability for both robots. This
year, we again narrow our focus to a smaller set of
tasks and, through extensive testing, fail-safes, and
multiple methods of task completion, ensure that we
can reliably complete our set of core tasks in any
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given competition run. By delegating tasks between
the two robots, we also allocate more testing time
per task, further increasing reliability.

II. DESIGN STRATEGY

A. Mechanical Design
This year, we focused on refining Oogway by

integrating a new torpedo subsystem and transi-
tioning to higher-fidelity mounts. We also designed
Crush, our new minibot, which features an alu-
minum frame, two isolated capsules, and a modular
design.

1) Oogway Torpedo System: This is the first
year that we have had a reliable torpedo system
mounted on Oogway. The launcher system consists
of two identical torpedo modules that slot into a
servo housing. Each torpedo module uses a spring-
loaded firing system that is actuated by a slip gear
mounted on a waterproof servo. The modularity of
the launcher design and the use of FDM printing
for all parts allow for quick repairs and prototyping.
The projectiles are also FDM printed, and we tested
many iterations before settling on the final design
(see Fig. 2a).

(a) Torpedo System (b) Battery Clamp

Fig. 2: New Oogway Mechanical Design Features

2) Oogway Battery Capsule Mount: A critical
issue with the design of our previous battery capsule
was its oblique mounting. This caused unequal drag,
which led to yaw drift and had to be compensated
for in software. To remedy this, we designed a
releasable clamp system (see Fig. 2b) that allows
the capsule to be lifted straight up, eliminating the
need for angled insertion. We utilized metal latches
and printed a clamp with hinges on each arm. This
design not only significantly reduced our battery
replacement time, but also offered the added benefit
of modulating clamping pressure for a stronger hold
at minimal cost to durability.

3) Crush Frame Design: We based Crush’s
frame design on our decision to isolate power and
signal components in separate capsules (see Section
II-A4). This separation improved noise isolation,
simplified wiring, and directly influenced the dual-
capsule layout and overall form factor.

Additionally, we performed fluid simulations (see
Fig. 3) to refine the frame’s geometry and minimize
drag. This helped ensure smooth flow over the body
and prevent unwanted pitch rotations. We also added
bottom rails to the frame to support future expan-
sion, such as sensors or task-specific mechanisms.

Fig. 3: Fluid Simulation of Crush

We also adopted a consistent mechanical architec-
ture—standardized brackets, mirrored walls, and re-
peatable mount patterns—making parts interchange-
able and significantly improving serviceability. The
mirrored layout also simplified buoyancy tuning, as
symmetric mass distribution made balancing more
predictable.

4) Crush Capsule Design: Crush’s electrical sys-
tem is divided into two capsules: a power and
signal capsule. These are built on a shared rail-based
chassis that enables modular, efficient organization.
Careful planning of internal component layout, with
particular attention to wiring simplicity and space
constraints, allowed over 10 tightly-packed com-
ponents to be mounted securely. The power cap-
sule features optimized placements for high-current
components like ESCs and the battery, while the
signal capsule prioritizes sensor alignment and mod-
ular accessibility. For instance, to support accurate
orientation sensing, the IMU was placed near the
system’s center, and the fiber optic gyroscope was
mounted in the yaw plane.
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B. Electrical Design

Building on insights gained from Oogway’s elec-
trical architecture, we designed Crush’s electronics
stack to prioritize our philosophy of modularity and
reliability.

1) Crush’s Electronics Stack Architecture: Fol-
lowing last year’s redesign of Oogway’s electronics
stack, we discovered the benefits of splitting the
power system into two separate grids: one for low-
power components, such as the CPU and gyroscope,
and one for high-power components, such as the
thrusters and battery. Despite these efforts, we still
noticed drift and error in sensor readings, especially
from the IMU, which is critical for determining the
robot’s state.

To address these issues, we designed Crush from
the ground up with full electrical isolation between
these two power grids. We placed the low-power
electronics inside the signal capsule, and moved
the high-power components into a second power
capsule. This layout reduces electromagnetic inter-
ference and makes it easier to service each part of
the system independently.

We began by prototyping the two power grids
on wooden boards to visualize how the components
would connect. We found that six inter-capsule con-
nections were required. Because the signal capsule
does not require high current, we used a water-
proof Ethernet cable to route these lines, leaving
two extra conductors as backups. For modularity,
we connected all eight lines to a screw terminal
inside the capsule, so we could route them to any
component as needed.

(a) Schematic of ESC PCB (b) Physical ESC PCB with
3 ESCs Mounted

Fig. 4: ESC PCB Schematic and Physical Layout

2) Printed Circuit Boards for ESCs: This year,
we have also added two custom PCBs to Crush’s
battery capsule, each one holding three ESCs,
enough to control all six thrusters (see Fig. 4).
We designed these boards to fit cleanly within
the mechanical constraints of the capsule and to
simplify power distribution.

Each ESC receives power and sends signals
through screw terminals, which enables fast and
modular rewiring. We also used thermal vias and
a strategic board layout to manage heat inside the
sealed capsule during operation.

3) Robot Agnostic Electrical Communication:
As part of Crush’s development, we also redesigned
our central electrical communication system to be
completely robot-agnostic. The system uses serial
communication and includes two Arduinos on each
robot: one for thruster control and one for managing
peripherals like sensors and servos.

We abstracted all hardware-specific code from
the main communication layer, which allows us
to use the same system across different robots.
A configuration file defines which peripherals are
connected. Our object-oriented design also makes it
easier to scale and adapt the system to new hardware
(see Section II-C2 for more details).

4) Gyroscope and Modem Integration: This year,
we added two major components to the electrical
systems on both Oogway and Crush: a fiber optic
gyroscope and an acoustic modem.

In the past, our most persistent issue was drift
in Oogway’s angular position caused by imprecise
yaw measurements from our IMU. This year, we
equipped both of our AUVs with fiber optic gy-
roscopes, which offer extremely precise yaw-axis
angular velocity measurements and are significantly
less sensitive to temperature fluctuations and EMI.

Additionally, the newly integrated WaterLinked
M16 modems enable underwater communication
between our vehicles. Thanks to their omnidirec-
tional transmission capabilities [1], the modems can
send and receive signals from anywhere in the pool
without requiring precise alignment or targeting.

5) Acoustics: Our acoustics system includes a
custom-designed PCB with four band-pass Cheby-
shev filters and amplifiers, one for each of the
analog hydrophones on our robot. The filtered data
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from these boards is processed, and the azimuth of
the pinger is reported to a ROS topic.

Initially, we used a two-pole Butterworth fil-
ter [2], but its gentle roll-off and the frequency
overlap between the pinger and noise resulted in
both being equally amplified. To address this, we
theorized that a Chebyshev filter, with its sharper
cutoff, would be better suited for this task. While
the Chebyshev filter provided a steeper frequency
response, the noise and pinger signal overlap still
results in both being simultaneously amplified.

In the future, we plan to implement temporal
filtering techniques that use the known ping time
interval. Additionally, we are also exploring meth-
ods such as cross-correlation with expected ping
shapes [3] and envelope following [4] to help iden-
tify pings from noise within the frequency band.
We plan to further tune the Chebyshev filter’s ripple
and gain to reduce distortion and better visualize the
ping shape across varying distances.

C. Software Design

In addition to hardware advancements, our soft-
ware team migrated our 50,000+ line codebase to
the ROS 2 framework. We also redesigned several
core packages to support a fully robot-agnostic
architecture, laying the foundation for faster and
more scalable development. Our software is open-
source and available on GitHub [5], supporting the
wider AUV community. See Fig. 26 and Fig. 27 for
our software control flow diagrams.

1) ROS 2 Migration: A major project this year
was the migration from ROS 1 to ROS 2. In past
years, we used ROS 1 as the underlying architecture
for robot processes; however, with ROS 1 reaching
EOL in 2025, it was crucial to migrate to ROS 2. We
currently use the Jazzy Jalisco distribution of ROS
2 which provides long-term support until 2029.

We used ROS 2 migration as an opportunity
for new team members to get aquainted with our
robot systems and ROS. The process of migrating
over 50,000 lines of code lasted from September
to February, resulting in the successful migration of
Oogway’s original codebase.

2) Robot-Agnostic Codebase: Duke Robotics al-
ways designs our code with reusability in mind,
but this is the first year we have simultaneously

supported multiple robots in production. Our sys-
tems now dynamically adapt to the robot in use
by reading the ROBOT_NAME environment variable,
which determines the launch files and node param-
eters that are used. We leverage ROS 2’s transform
library to localize each robot’s sensors, motors, and
other components with respect to its own coordinate
frame. This enables different configurations, such as
camera placements, IMU offsets, or motor IDs, to
co-exist in a unified codebase.

For example, robot-specific thruster configura-
tions are abstracted through a modular controls
package. A wrench matrix is calculated from the
specific thruster orientations and positions of each
robot, allowing us to convert arbitrary velocity
commands into precise motor outputs for each of
our unique robots. The task planning system builds
on this abstraction: tasks like “navigate around a
buoy” are written without reference to a particular
hardware layout. This unified architecture allows us
to streamline testing between robots and create more
forward-compatible code.

3) Computer Vision (CV): The primary focus of
the CV team this year was to clean up accumulated
technical debt by rewriting most of our CV pipeline.
The motivation here is twofold: first, last year, we
had many separate files that were very similar;
this repetition was inefficient and led to longer
testing cycles. Secondly, adding Crush as a robot
increased our desirability for modular and robot-
agnostic software systems.

This cleanup involved both our HSV filtering
algorithms and our YOLO models running on
DepthAI hardware. For DepthAI, we consolidated
distinct files that differed depending on the hard-
ware into a single, hardware-agnostic file such that
whenever we update our CV pipeline, we only need
to update a single DepthAI file. We made similar
modifications to our HSV filtering system: instead
of multiple files for essentially the same algorithm
but subscribing and publishing to different topics,
we made a single class that can be easily extended
and customized for specific detections. Since the
base class remains the same, it is significantly easier
to make changes to our HSV filtering pipeline.
Ultimately, CV refactoring resulted in a reduction
in lines of code by a factor of three.
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III. TESTING STRATEGY

A. Test Plan

Both Crush and Oogway’s testing suites comes
from a combination of simulated and real-world
environments. Our test plan is as follows:
1) Test all compatible components in simulation.

This allows us to verify core functionality, iden-
tify bugs early, and iterate quickly without risk-
ing hardware damage.

2) Test each component physically on the robot to
ensure all components fit and connect properly.
We run component-specific tests in the pool and
in the sink when possible.

3) Once all components work separately, test the
integration of components in the pool to mimic
a real competition environment. Pool testing al-
lows us to test the robot on competition tasks and
ensure that we can complete each task reliably.

Following this strategy ensured that every compo-
nent is individually reliable and our fully assembled
robots can consistently complete all core tasks.

B. Simulated Testing

1) Software: We utilized our custom sim envi-
ronment in CoppeliaSim—which includes models
of our AUVs and competition props—to test con-
trols and task planning algorithms. Before empirical
testing, we ran each of our core tasks in the sim to
ensure our code completed the task correctly.

2) Acoustics: While developing the algorithm
underlying the acoustics stack, we created a simu-
lated acoustics program. This involved simulating a
pinger source and calculating the induced pressure
waves. This, combined with encoded hydrophone
geometries and artificial noise, provided realistic
data to test our algorithm with.

C. Empirical Testing

1) Mechanical: All water-facing parts underwent
extensive functionality and water-resistance testing.
This often involved long-duration submersion tests
in a sink. Once passed, the testing would escalate to
a diving pool. This comprehensive approach guar-
antees all vital components will remain watertight
during operation. Non-water-facing components go
through the standard prototyping process, which
involves testing and iteration on dry land.

2) Electrical: To evaluate long-term perfor-
mance, we ran each electrical component through
extended testing. Subcon and epoxy connections
also underwent 24-hour submersion testing. After
individually validating each component, we carried
out full system integration tests to ensure the sys-
tems functioned properly in conjunction with each
other. Communication systems were also tested in
an end-to-end fashion, using mock components to
ensure the signal was properly transmitted from the
sensor to the computer.

3) Software: We tested our controls and task-
planning systems through our Foxglove GUI [6],
which allows us to set PID constants and observe
setpoints. We visualized the task flow of the robot
to verify the robot’s state and actions.

4) CV: To test our object detection algorithm, we
set up the gate task and manually moved the robot
around to test all vision angles. We also tested CV-
sonar integration, by matching the two data streams.
We then tested movement autonomously, verifying
the reliability of our gate task.

D. Testing Results and Integration Testing
Towards the end of our season, we tested the

robot with each of our core tasks to verify that we
could reliably compete in a competition environ-
ment. In total, we spent over 500 hours in simulated
and empirical testing environments, resulting in
Oogway prequalifing for the 2025 RoboSub com-
petition.
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APPENDIX A: TEST PLAN & RESULTS

A. Mechanical

Mechanical testing is arguably the most critical
aspect of verifying the performance of our AUVs.
A failure here would disable all other subsystems.
As described in Section III-C1, water-facing com-
ponents were put through multiple rounds of testing.

1) Crush Capsule Mounts: Crush’s electrical
system is split between two capsules: signal and
power. The signal capsule contains the computer,
USB hubs, and sensors. The power capsule contains
the battery, ESCs, and other high-current compo-
nents.

Both capsules use the same rail-based chassis.
Components slide into place along four long rails
and connect through a central wiring path. Parts that
interface are placed close together to keep wiring
simple.

Our design of the power capsule focused on
maximizing space efficiency. We needed to fit over
ten components, along with their wiring, into a
very constrained volume. To support this, we used
the same rail-based system designed for the signal
capsule. This approach ensured the components
stayed stable and properly aligned, minimizing any
unwanted movement within the assembly.

Since the battery needed to interface with output
wiring from the capsule, we placed it at the rear. We
mounted a busbar on top of the battery, surrounded
it with a protective 3D-printed casing, and seated
it on a supportive base to distribute its weight and
prevent any components from rubbing against it.

Most of the remaining components were arranged
in the front half of the capsule. To make the most of
the limited space, we often placed multiple compo-
nents on a single mount. Because we used six ESCs,
our original plan was to mount three on one frame
and three on another, with the Arduino breakout
board on the back of one and the 16-channel PWM
generator on the back of the other.

However, this configuration didn’t leave enough
room for the battery. So we revised the layout, plac-
ing both the Arduino breakout and PWM generator
on the back of one ESC frame and leaving the other
frame empty to accommodate the rear half of the
battery. This change not only created more space

for the fuse and other smaller components, but also
simplified the overall wiring.

The design of the signal capsule is done in a
similar manner. While some components could be
placed where it is convenient, the location of the
IMU was important. Since there were two separate
capsules and the IMU needed to be close to the cen-
ter of both, it was restricted to being placed to the
side of the signal capsule. The legs of each mount
utilized either the same or similar structure as that
of the power capsule, where each only allowed for
one degree of freedom, which is the direction that
is moving along the rails. The sliding mechanisms
of the frames allow for easy replacement of parts if
they were to fail.

Fig. 5: Signal Capsule

2) Oogway Nylon Transition: Last year, we used
PLA 3D prints for all of Oogway’s external mounts.
During testing, these parts slowly filled with water,
which changed the robot’s buoyancy over time and
made tuning unreliable. We tried to reduce this
effect by using 100% infill and sealing parts with
nail polish. This year, we replaced all external parts
with Nylon 12 printed on a FormLab’s Fuse 1
Printer. Unlike PLA printed through FDM, Nylon
12 printed through SLS is always at 100 % infill
and therefore does not absorb water, maintaining
consistent properties throughout runs. The switch
also improved strength and reliability without ne-
cessitating additional modification.

3) Oogway Upgraded Buoyancy System: Last
year, we replaced zip-tied buoyancy blocks with a
pole-based mounting system, which allowed faster
adjustments, even while the robot was in the water.
However, the PLA poles were fragile and often
broke under stress. This year, we kept the 3D-
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printed base but replaced the pole with a thin
aluminum tube. This improved the system’s strength
and reliability, reducing the chance of failure during
handling and testing.

4) Crush Buoyancy Mounts: We designed a new
set of buoyancy mounts for Crush using Solidworks
and VCarve. To avoid compromising the hydro-
dynamics of Crush, we created a tool path that
matched the shape of Crush’s sides and bottom.
After experimenting with different placements, three
large blocks were successfully mounted. We also
added a smaller modular system to allow for fine
tuning.

Fig. 6: Attached Buoyancy Blocks

5) Sensor Mounts: The following section out-
lines the design of Crush’s sensor mounts.

General Component Mounting. We designed
three different types of L brackets to mount all
major components on Crush. Two of these brackets
are used to mount the backplate of Crush (see Fig.
8 and Fig. 9) and a smaller, more robust L bracket
is used for general mounting (Fig. 7).

Fig. 7: Smaller, More Robust General Mounting
L Bracket

Fig. 8: One Design of Crush Backplate L Bracket

Fig. 9: Another Design of Crush Backplate L
Bracket

Capsule Mount. After finalizing the capsule
mount designs (Fig. 10), the SLS-printed nylon
capsule mount was attached to Crush’s backplate.
It holds the capsules at a set distance apart to
prevent electro-magnetic interference between the
components in each capsule.

Fig. 10: Capsule Mount CAD

Thruster Mounts and Wings. To mount the
thrusters (Fig. 12), cuts of aluminum wings (Fig.
11) are modeled in addition to the flat sections to
mount three thrusters in a position that aligns with
the center of the robot.

Hydrophone Brackets. An improved set of sen-
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Fig. 11: Thruster Wing

Fig. 12: Thruster Mount

sor mounts was redesigned to securely hold hy-
drophones and mount to different surfaces on Crush
and Oogway. Using Solidworks, existing files were
modified to match the mounting pattern on both
AUVs. In addition, each mounting pattern was
applied to both a straight bracket (Fig. 14) and
an L-bracket (Fig. 13). The dimensions for the
hydrophone-holding holes were tweaked to maintain
a friction fit with the O-ring. After testing, the
designs were finalized, 3D printed, and mounted.

Fig. 13: Hydrophone Holder L Bracket

Marker Dropper. The existing marker dropper
was redesigned in two ways.

1) The servo mount was redesigned to better ac-
commodate the motor wiring on Oogway (Fig.

Fig. 14: Hydrophone Holder Straight Bracket

15 & 16).
2) The attachment mechanism was redesigned to

be compatible with Crush’s mounting holes
(Fig. 17).

Fig. 15: Oogway Marker Dropper Back

Fig. 16: Oogway Marker Dropper Front

B. Electrical

Rigorous testing is the foundational principle of
our team’s testing strategy. Our efforts focus on
validating the core responsibilities of the electrical
subsystem, power distribution, and data acquisition,
in addition to research and development surrounding
our acoustics system.
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(a) Crush Marker Dropper without Cover

(b) Crush Marker Dropper Mounting Pattern

Fig. 17: Crush Marker Dropper Views: (a) With-
out Cover, (b) Mounting Pattern

1) General Component & Integration Testing:
The electrical team prioritizes staged validation to
ensure system reliability and reduce integration is-

sues. Before any component is installed onboard
the robot, it undergoes comprehensive functional
testing on land and in isolation from the rest of the
stack. This approach ensures that each subsystem
operates correctly under known conditions before
being subjected to the complex dependencies and
constraints of our robotic systems.

Given the variety of components, from power
regulators and motor controllers to environmental
sensors and networking modules, this incremental
approach allows the team to diagnose hardware
issues, firmware bugs, and signal noise without the
confounding variables introduced during in-robot
testing. We conduct bench tests using custom-built
systems and breakout boards, mimicking the real
environment as much as possible while ensuring the
system is easy to debug. This allows us to replicate
conditions such as expected voltages, communica-
tion protocols, and signal timings.

Once a component passes standalone testing
through its designated communication interface, it is
temporarily integrated into the robot with minimal
attachment points. This approach verifies proper
functionality within the real system environment
while maintaining ease of removal for rapid iteration
and modification.

By the time full system integration occurs, each
piece of the electrical stack has been tested both in
isolation and within its local control domain. This
greatly increases confidence in the system’s stability
and accelerates debugging when faults occur during
integrated operation. Only after passing these staged
tests does a component undergo underwater testing.

This pre-integration methodology has also re-
duced wear on critical hardware. Testing on land
with external power supplies and development mi-
crocontrollers prevents unnecessary cycles on our
main compute and power systems.

The testing workflow remains a core part of our
design philosophy—ensuring that every connection,
signal, and component is understood and trusted
before it hits the water.

2) Acoustics Testing: Building on lessons from
previous years, we opted to completely redesign our
PCBs from the ground up. This redesign allowed
us to explore new filter architectures—specifically
Butterworth and Chebyshev filters—which offered
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significantly greater customization and precision in
signal conditioning.

Our testing pipeline begins at the earliest stages of
design. Once a filter type is selected, we prototype
it on a breadboard to approximate its behavior with
real hydrophones and pinger signals. This validation
helps us evaluate the filter’s real-world effectiveness
before committing to a final layout.

Following successful prototyping, we move on to
schematic design and PCB fabrication. The printed
circuit boards are then assembled and undergo rigor-
ous system-level testing to assess their performance
within the full acoustic signal chain.

Although these designs are still undergoing re-
finement, particularly in tuning filter parameters
such as cutoff frequency, ripple, and gain, we an-
ticipate that the resulting higher-fidelity acoustic
data will enable more advanced signal processing
algorithms to reliably detect pinger outputs, even in
noisy or dynamic underwater environments.

Fig. 18: Acoustics Filter and Amplifier Boards
with BPF Backpack

C. Software
This section outlines our software testing proce-

dures.
1) State: Our testing plan for diagnosing issues

with robot state is as follows:
1) First, restart the robot, all Docker containers, and

ensure that the Arduino is connected. Then turn
the power DVL switch on.

2) Verify that all of the DVL, IMU, and pressure
sensor are outputting to the correct ROS topics.

3) Verify that the robot-localization ROS package
is running.

Fig. 19: Magnitude of Frequency Response of Fil-
ters in Pinger-less Pool. Bandpass ‘hump’ visible
at ∼40kHz is about the same as the frequency
range of our pinger.

4) Manually move the robot forward, to the left,
and up. Verify that the DVL’s velocities in each
of these directions is positive.

5) Manually rotate the robot counter-clockwise
about the z-axis. Verify that the IMU’s yaw value
is increasing.

6) Leave the robot stationary and observe the fre-
quencies of the DVL, IMU, and pressure sensor.
Verify that they are all above 20Hz.

7) Leave the robot stationary and observe the
/state topic’s covariance matrices. Verify they
are not increasing over time.

2) Controls: Our custom controls package de-
mands careful yet thorough testing. To prevent the
robot from making any sudden, unintended moves,
we disabled the thrusters during these tests.
1) We first checked that when controls received a

setpoint, it computed the correct error values,
which determine where the robot will attempt
to move.

2) Once the errors were accurate, they were fed into
the PID loops, which computed their integrals
and derivatives. We made sure that these were
the correct values, and tuned the parameters of
the Butterworth filter for optimal smoothing of
the derivative.

3) We then checked that the control efforts output
by the PID loops would lead to the robot achiev-
ing its desired state.

4) We checked the dynamic offset added to the PID
outputs to counteract the robot’s positive buoy-
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ancy. We rolled, pitched, and yawed the robot
different directions and ensured that the offset
vector always pointed straight up, regardless of
the robot’s orientation.

5) We then verified that the thrust allocations ob-
tained from our quadratic programming solver
matched our expectations.

6) We modified the PID gains and other values
on-the-fly, and ensured that they updated the
system’s behavior as expected and were saved
to disk so they could be reused in future runs.

7) With all parts of the system independently tested
and verified to be working as expected, we
finally enabled the thrusters and allowed the
robot to move using the new controls system.
The robot behaved as we expected, and didn’t
perform any movements that would damage it-
self.

3) Foxglove GUI: By automatically converting
ROS message schemas to TypeScript types [7], we
are able to enforce static type checking to validate
the connections between our landside GUI and on-
board ROS system. This means that at development-
time, TypeScript will alert us if any concurrent work
done on our ROS stack (e.g., a change to our PID
service API) will interfere with our Foxglove GUI
stack. This allows us to catch numerous bugs early,
before any actual testing has occurred.
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APPENDIX B: FULL ELECTRICAL SYSTEM DIAGRAMS

Fig. 20: Oogway’s Electrical System Diagram
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Fig. 21: Crush’s Electrical System Diagram
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Fig. 22: Oogway’s Electrical Stack Mounts – CAD

Fig. 23: Oogway’s Electrical Stack – Populated, Top View
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Fig. 24: Crush’s Electrical Stack Mounts – CAD

Fig. 25: Crush’s Electrical Stack – Populated, Front View
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APPENDIX C: CONTROL FLOW DIAGRAM

Fig. 26: Oogway’s Software Control Flow Diagram
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Fig. 27: Crush’s Software Control Flow Diagram
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APPENDIX D: THRUSTER ORIENTATIONS

When designing our new robot Crush, we took a new look at our thruster orientations to minimize
unwanted torque caused by the spinning propellers. This was especially important because Crush does
not have active pitch controls, and so we had to ensure that the arrangement of thrusters would not
adversely pitch the robot while moving.

In this process, we reviewed the Blue Robotics thrusters guide [8], and noticed that the type of propeller
installed (clockwise versus counter-clockwise), played a big role in determining which direction could
produce the most thrust. If some thrusters were spinning in the optimal direction and others were not,
this would create an imbalance, leading to unintentional drift, and residual torque.

To address this problem, we first identify the factors determined the directions the thrusters should spin
in:

• Propeller Type: The type of propeller (CW or CCW) determines the optimal spin direction.
• ESC Wiring: The ESC wiring determines the actual direction the motor spins at a set PWM signal.
For clarity, we also defined two types of ESC configurations:
• Standard ESC: Given a PWM signal > 1500µs, the thruster spins clockwise.
• Flipped ESC: Given a PWM signal > 1500µs, the thruster spins counter-clockwise.
Now, based on how the 4 combinations of ESC configuration and propeller types are paired, we can

classify the thrusters into two categories:
• Normal Orientation: A standard ESC with a CW propeller, or a flipped ESC with a CCW propeller,

will produce the intended forward thrust when given a PWM signal above 1500µs.
• Reverse Orientation: A standard ESC with a CCW propeller, or a flipped ESC with a CW propeller,

will produce reverse thrust when given a PWM signal above 1500µs.
To reconcile these differences, for each thruster, we tested the ESC to determine its configuration, then

the propeller to determine its direction. For all reverse orientation thrusters, we flipped the PWM signal
across the midpoint of 1500µs.

This setup allows our controls algorithm to send each thruster a value indicating the desired forward
thrust. A separate translation layer then converts this value into the correct PWM signal based on the
thruster’s orientation. This abstraction simplifies our control code and ensures that all thrusters respond
predictably, regardless of their physical configuration.
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