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MATH 222 — Homework #1
Due January 18, 2023

Maxwell Lin

Problem 1

Use induction on k to prove that if x1, . . . , xk ∈ Rn, then

∥x1 + . . .+ xk∥ ≤ ∥x1∥+ . . .+ ∥xk∥.

Solution

Proof.

Base case (k = 1): ∥x1∥ ≤ ∥x1∥ as required

Inductive step: Suppose ∥x1 + . . .+ xk∥ ≤ ∥x1∥+ . . .+ ∥xk∥. Then

∥x1 + . . .+ xk∥+ ∥xk+1∥ ≤ ∥x1∥+ . . .+ ∥xk∥+ ∥xk+1∥

and

∥x1 + . . .+ xk + xk+1∥ ≤ ∥x1 + . . .+ xk∥+ ∥xk+1∥ Triangle Inequality

Thus,

∥x1 + . . .+ xk + xk+1∥ ≤ ∥x1∥+ . . .+ ∥xk∥+ ∥xk+1∥

and P (k) =⇒ P (k + 1), completing the inductive step. Therefore, ∥x1 + . . .+ xk∥ ≤ ∥x1∥+ . . .+ ∥xk∥ for

∀k ∈ Z+.

Problem 2

For any x, y ∈ Rn,

∥x− y∥ ≥
∣∣∥x∥ − ∥y∥

∣∣.
Solution

Proof.

x · y ≤ ∥x∥∥y∥ Cauchy–Schwarz inequality

−2x · y ≥ −2∥x∥∥y∥
∥x∥2 − 2x · y + ∥y∥2 ≥ ∥x∥2 − 2∥x∥∥y∥+ ∥y∥2

∥x− y∥2 ≥ (∥x∥ − ∥y∥)2

∥x− y∥ ≥
∣∣∥x∥ − ∥y∥

∣∣
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Maxwell Lin MATH 222 — Homework #1 Problem 3

x
y

x− y

Figure 1: The length of any side of a triangle is greater than or equal to the absolute value of the difference

of lengths of the other two sides.

Problem 3

For any natural number n, consider the following sets:

Cn = {x ∈ Rn | |xi| ≤ 1 for each i = 1, . . . , n}
Dn = {x ∈ Rn | ∥x∥ ≤ 1}
Dn

r = {x ∈ Rn | ∥x∥ ≤ r} for any fixed r > 0

Part A
Geometrically describe Cn and Dn for n = 1, 2, 3.

Solution
C1 and D1: The real number line on the interval [-1, 1]

C2: All 2D points of a 2 by 2 square centered at the origin

D2: All 2D points of the unit circle

C3: All 3D points of a 2 by 2 by 2 cube centered at the origin

D3: All 3D points of the unit sphere

Part B
Prove that Dn ⊂ Cn, but Dn

r ̸⊂ Cn for any r > 1.

Solution

Proof. Suppose x ∈ Dn, then

∥x∥ ≤ 1√
x2
1 + . . .+ x2

n ≤ 1

x2
1 + . . .+ x2

n ≤ 1

xi ≤ ±
√
1− (x2

1 + . . .+ x2
i−1 + x2

i+1 + . . .+ x2
n)

|xi| ≤ 1 Since 0 ≤ x2
1 + . . .+ x2

n ≤ 1

x ∈ Cn

Dn ⊂ Cn as required.

For the second part of the proof, we have the counterexample: re1 ∈ Dn
r , but re1 /∈ Cn for ∀r > 1.

Part C
Prove that for any x,y ∈ Dn, ∥x− y∥ ≤ 2.

Solution

Problem 3 continued on next page. . . 2



Maxwell Lin MATH 222 — Homework #1 Problem 3 (continued)

Proof. Suppose x, y ∈ Dn, then ∥x∥ ≤ 1 and ∥y∥ ≤ 1. This implies

∥x− y∥ ≤ ∥x∥+ ∥ − y∥ = ∥x∥+ ∥y∥ ≤ 2

Part D
Prove that we can find a pair of points xn,yn ∈ Cn such that ∥xn − yn∥ = 2

√
n.

Proof. Take xn = (1, 1, . . . , 1) and yn = (−1,−1, . . . ,−1). Then,

∥xn − yn∥ = ∥(2, 2, . . . , 2)∥

=
√

22 + 22 + . . .+ 22

=
√
4n

= 2
√
n
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MATH 222 — Homework #2
Due January 25, 2023

Maxwell Lin

Problem 4

Prove that the set A =
{
(x, y) ∈ R2 | x > 0

}
is open.

Solution

Proof. To show that A is open, we must show that there exists some r > 0 so that Dr((x, y)) ⊂ A for

∀(x, y) ∈ A. We claim that r = x. Suppose (u, v) ∈ Dr((x, y)). Then

∥(u, v)− (x, y)∥ < r

∥(u− x, v − y)∥ < r√
(u− x)2 + (v − y)2 < r

|u− x| =
√
(u− x)2 ≤

√
(u− x)2 + (v − y)2 < r = x

Which implies that

=⇒ −x < u− x < x

=⇒ 0 < u

=⇒ (u, v) ∈ A

=⇒ Dr((x, y)) ⊂ A as required

Problem 5

Part A
If U and V are open sets, prove that U ∪ V and U ∩ V are open.

Solution

Proof. We have

U ∪ V = {x ∈ Rn | x ∈ U or x ∈ V }

To prove that U ∪ V is open, we must show that for every x ∈ U ∪ V there exists a r > 0 such that

Dr(x) ⊂ (U ∪ V ). There are two cases.

Case 1: Suppose that x ∈ U . Since U is open, this implies that there exists r > 0 such that Dr(x) ⊂ U .

Additionally, U ⊂ (U ∪ V ) since any arbitrary element of U is also an element of U ∪ V . Thus, if x ∈ U we

have Dr(x) ⊂ (U ∪ V ).
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Maxwell Lin MATH 222 — Homework #2 Problem 5 (continued)

Case 2: (We proceed the same way as Case 1.) Suppose that x ∈ V . Since V is open, this implies that there

exists r > 0 such that Dr(x) ⊂ V . Additionally, V ⊂ (U ∪ V ) since any arbitrary element of V is also an

element of U ∪ V . Thus, if x ∈ V we have Dr(x) ⊂ (U ∪ V ).

Therefore, U ∪ V is open.

For the second proof we have

U ∩ V = {x ∈ Rn | x ∈ U and x ∈ V }

If x ∈ (U ∩ V ), then there exists r > 0 such that Dr(x) ⊂ U and a s > 0 such that Ds(x) ⊂ V . Either r ≤ s

or s ≤ r. Suppose that r ≤ s. Thus, Dr(x) ⊂ Ds(x) ⊂ V and therefore we have

Dr(x) ⊂ V and Dr(x) ⊂ U

which is equivalent to

Dr(x) ⊂ U ∩ V.

Therefore, U ∩ V is open.

Part B
More generally, if U1, U2, U3, . . . are open sets in Rn, prove that the infinite union U =

⋃∞
i=1 Ui is open.

(That is, U = {x ∈ Rn | x ∈ Ui for some i}.)

Solution

Proof. We proceed similarly to Part A. We need to show that for all x ∈ U , there exists an r > 0 such that

Dr(x) ⊂ U .

If x ∈ U then x ∈ Ui for some i. Since Ui is an open set, there exists some ri > 0 so that Dri(x) ⊂ Ui. Since

all elements of Ui are elements of U , Ui ⊂ U and we have Dri(x) ⊂ U as required.

Part C
Consider the sets Ui = D1/i(0) for i = 1, 2, 3, . . . Determine whether or not the infinite intersection

V =
⋂∞

i=1 Ui is open, and justify your answer. (That is, V = {x ∈ Rn | x ∈ Ui for all i}.)

Solution

Proof. First, let’s examine what elements are in V.

For the sake of contradiction, suppose that there exists x ̸= 0 ∈ V . Thus, ∥x∥ > 0. This means x ∈ Ui for

all i. However, there will always exist a U⌈ 1
∥x∥⌉ which x is not contained in. In other words, there always

exists a Ui+1 that is a proper subset of Ui. This is a contradiction and therefore any nonzero x is not in V .

However, x = 0 ∈ V since V is the infinite intersection of open disks with a positive radius. That is, ∥0∥ ≤ r

for all r > 0.

Thus, the only element in V is the zero vector. There does not exist an r > 0 such that Dr(0) ⊂ {0}. For

example, the point ( r2 , 0, . . . , 0) ∈ Dr(0) but not in {0}. Thus, V is not an open set.
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MATH 222 — Homework #3
Due February 1, 2023

Maxwell Lin

Problem 1

Let f(x, y) =

{
xy3

x2+y6 if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0).

(a) Compute the limit as (x, y) → (0, 0) of f along the path x = 0.

(b) Compute the limit as (x, y) → (0, 0) of f along the path x = y3.

(c) Show that f is not continuous at (0, 0).

Solution
For parts a and b we only need to examine the first condition of f where (x, y) ̸= (0, 0) since the limit as

(x, y) → (0, 0) does not depend on the value of f at (0, 0).

a) If (x, y) approaches (0, 0) along the path x = 0, the limiting value is

lim
y→0

0y3

02 + y6
= lim

y→0
0 = 0

b) If (x, y) approaches (0, 0) along the path x = y3, the limiting value is

lim
y→0

y3y3

(y3)2 + y6
= lim

y→0

y6

2y6
=

1

2

c) For f to be continuous at (0, 0), the lim(x,y)→(0,0) f must exist and equal f(0, 0). However, the limit does

not exist since from parts a and b, we have two different paths to (0, 0) resulting in different limiting

values. Thus for ϵ ≤ 1
2 , there is no δ > 0 such that ∥x∥ < δ =⇒ |f(x)| < ϵ.

Problem 2

Compute the following limits if they exist:

(a) limit(x,y)→(0,0)
(x+y)2−(x−y)2

xy

(b) limit(x,y)→(0,0)
sin xy

y

(c) limit(x,y)→(0,0)
x3−y3

x2+y2

Solution

a)

lim
(x,y)→(0,0)

(x+ y)2 − (x− y)2

xy
= lim

(x,y)→(0,0)

(x2 + 2xy + y2)− (x2 − 2xy + y2)

xy
= lim

(x,y)→(0,0)
4 = 4

1



Maxwell Lin MATH 222 — Homework #3 Problem 2 (continued)

b)

lim
(x,y)→(0,0)

sin(xy)

y
= lim

(x,y)→(0,0)

x sin(xy)

xy
=

(
lim

(x,y)→(0,0)
x

)(
lim

(x,y)→(0,0)

sin(xy)

xy

)
= (0)(1) = 0

To see why lim(x,y)→(0,0)
sin(xy)

xy = 1, note that sin(xy)
xy can be rewritten as the composition of two functions:

(g ◦ f)(x, y) where f(x, y) = xy and g(x) = sinx
x . Since lim(x,y)→(0,0) f(x, y) = 0 and limx→0 g(x) = 1,

lim(x,y)→(0,0)(f ◦ g)(x) = 1.

c) By the triangle inequality, we have∣∣∣∣x3 − y3

x2 + y2

∣∣∣∣ ≤ ∣∣∣∣ x3

x2 + y2

∣∣∣∣+ ∣∣∣∣ −y3

x2 + y2

∣∣∣∣ = |x|x2

x2 + y2
+

|y|y2

x2 + y2

Additionally, we have
|x|x2

x2 + y2
≤ |x|

since if y = 0 we have equality and if y ̸= 0 the first expression is less than the second. Likewise,

|y|y2

x2 + y2
≤ |y|

Combining with the first inequality, we obtain∣∣∣∣x3 − y3

x2 + y2

∣∣∣∣ ≤ |x|x2

x2 + y2
+

|y|y2

x2 + y2
≤ |x|+ |y|

Therefore,

−(|x|+ |y|) ≤
∣∣∣∣x3 − y3

x2 + y2

∣∣∣∣ ≤ |x|+ |y|

By the squeeze theorem, since lim(x,y)→(0,0) −(|x|+ |y|) = lim(x,y)→(0,0) |x|+ |y| = 0

lim
(x,y)→(0,0)

x3 − y3

x2 + y2
= 0

Problem 3

Give the formulas for the partial derivatives at an arbitrary point (x, y) as well as at the specified values.

(a) z =
√
a2 − x2 − y2; (0, 0), (a/2, a/2)

(b) z = log
√
1 + xy; (1, 2), (0, 0)

(c) z = eax cos(bx+ y); (2π/b, 0)

Solution

a) z =
√
a2 − x2 − y2; (0, 0), (a/2, a/2)

∂z

∂x
(x, y) =

−x√
a2 − x2 − y2

∂z

∂y
(x, y) =

−y√
a2 − x2 − y2

∂z

∂x
(0, 0) = 0 for a ̸= 0

∂z

∂y
(0, 0) = 0 for a ̸= 0

∂z

∂x
(a/2, a/2) =

−a
√
2

|a|2
for a ̸= 0

∂z

∂y
(a/2, a/2) =

−a
√
2

|a|2
for a ̸= 0

Problem 3 continued on next page. . . 2



Maxwell Lin MATH 222 — Homework #3 Problem 3 (continued)

b) z = log
√
1 + xy; (1, 2), (0, 0)

∂z

∂x
(x, y) =

y

2
√
1 + xy

√
1 + xy

=
y

2 + 2xy

∂z

∂y
(x, y) =

x

2 + 2xy

∂z

∂x
(1, 2) =

2

2 + 2(1)(2)
=

1

3

∂z

∂y
(1, 2) =

1

2 + 2(1)(2)
=

1

6

∂z

∂x
(0, 0) =

0

2 + 2(0)(0)
= 0

∂z

∂y
(0, 0) =

0

2 + 2(0)(0)
= 0

c) z = eax cos(bx+ y); (2π/b, 0)

∂z

∂x
(x, y) = aeax cos(bx+ y)− beax sin(bx+ y)

∂z

∂y
(x, y) = −eax sin(bx+ y)

∂z

∂x
(2π/b, 0) = ae2πa/b

∂z

∂y
(2π/b, 0) = 0

Problem 4

Define f : R2 → R by

f(x, y) =

{
xy

x2+y2 if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0).

Show that at (x, y) = (0, 0), f is ”shmifferentiable” (i.e. its partial derivatives exist) but not continuous.

This is another reason that merely knowing that the partials exist isn’t a good definition of differentiability:

we should expect, as in single-variable calculus, that differentiable implies continuous.

Solution
f is shmifferentiable at (0, 0) since

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

(h)(0)
h2+02 − 0

h
= lim

h→0

0

h
= 0

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0

(0)(h)
02+h2 − 0

h
= lim

h→0

0

h
= 0

If f is continuous, lim(x,y)→(0,0) f(x, y) = 0. However, the limit does not exist since if (x, y) → (0, 0) along

the path x = y, the limiting value is

lim
y→0

y2

2y2
=

1

2

while if (x, y) → (0, 0) along the path x = −y the limiting value is

lim
y→0

−y2

2y2
= −1

2

Since approaching (0, 0) along different paths results in different limits, the limit does not exist and f is not

continuous at (0, 0). That is, for ϵ ≤ 1
2 , there is no δ > 0 such that ∥x∥ < δ =⇒ |f(x)| < ϵ.

3



Maxwell Lin MATH 222 — Homework #3 Problem 5

Problem 5

Let v > 0 be a fixed real number. Define f : R2 → R by

f(x, t) = e−(x−vt)2 .

We are using t (rather than y) for the second variable because we are thinking of x as position and t as time.

This is meant as a representation of a single wave traveling along a line at speed v.

(a) Draw the sections of the graph of f for t = −1, 0, 1, and explain why the above description makes sense.

(Feel free to use a graphing device or look up ”Gaussian function” to give you a basic sense of what the

graph should look like.)

(b) Compute ∂f
∂x and ∂f

∂t .

(c) Show that f satisfies the equation
∂f

∂t
+ v

∂f

∂x
= 0.

(This is an example of a partial differential equation, a relation between the partial derivatives of a function

of multiple variables. This particular equation is called the transport equation.)

Solution

a)

Problem 5 continued on next page. . . 4



Maxwell Lin MATH 222 — Homework #3 Problem 5 (continued)

The above description makes sense since e−x2

represents a single wave at the origin. Multiplying speed

with time results in distance which shifts the wave appropriately. That is, a positive time shifts the wave

to the right and a negative time shifts the wave to the left. Increasing speed proportionally scales the

rate at which the wave travels along the x-axis.

b)

∂f

∂x
= −2(x− vt)(e−(x−vt)2)

∂f

∂t
= 2v(x− vt)(e−(x−vt)2)

c)

∂f

∂t
+ v

∂f

∂x
= 2v(x− vt)(e−(x−vt)2) + v(−2(x− vt)(e−(x−vt)2))

= 2v(x− vt)(e−(x−vt)2)− 2v(x− vt)(e−(x−vt)2)

= 0

Problem 6

Let f : Rn → Rm be a function. For any subset U ⊂ Rm, we define f−1(U) = {x ∈ Rn | f(x) ∈ U} (that is,

the set of point that map into U). Prove that f is continuous if and only if for every open set U ⊂ Rm, f−1(U)

is open.

Solution

Proof.

( =⇒ ) Suppose U ⊂ Rn is an open set. We need to show that f−1(U) is open. Suppose x0 ∈ f−1(U). By def-

inition, f(x0) ∈ U . Since U is open there exists ϵ > 0 such that Dϵ(f(x0)) ⊂ U . By continuity, ∀ϵ > 0, there

∃δ > 0 such that ∥x−x0∥ < δ =⇒ ∥f(x)−f(x0)∥ < ϵ. Thus, if x ∈ Dδ(x0), we have f(x) ∈ Dϵ(f(x0)) ⊂ U

and x ∈ f−1(U). Therefore, Dδ(x0) ⊂ f−1(U) for arbitrary x0 ∈ f−1(U) proving that f−1(U) is an open set.

( ⇐= ) Suppose x0 ∈ Rn and ϵ > 0. Since open balls are open sets, Dϵ(f(x0)) is an open set in Rm. By

assumption, U = f−1(Dϵ(f(x0))) is an open set in Rn. Since f(x0) ∈ Dϵ(f(x0)), we have x0 ∈ U . Since U

is open, there is some δ > 0 such that Dδ(x0) ⊂ U = f−1(Dϵ(f(x0))). This means that if x ∈ Dδ(x0), we

have x ∈ f−1(Dϵ(f(x0))) and f(x) ∈ Dϵ(f(x0)). Equivalently, ∥x − x0∥ < δ =⇒ ∥f(x) − f(x0)∥ < ϵ for

arbitrary x0 ∈ Rn. Therefore, f is continuous.

5



MATH 222 — Homework #4
Due February 8, 2023

Maxwell Lin

Problem 1

Let f(x, y) = ex
2−y2

. Find the equation for the tangent plane to the graph of f at the point (1, 1).

Solution

Df(1, 1) =
[
∂f
∂x (1, 1)

∂f
∂y (1, 1)

]
=

[
ex

2−y2

(2x)
∣∣∣
(1,1)

ex
2−y2

(−2y)
∣∣∣
(1,1)

]
=

[
2 −2

]

Thus, the tangent plane is parametrized by:

g(x, y) = f(1, 1) +Df(1, 1)((x, y)− (1, 1)) = 1 +
[
2 −2

] [x− 1

y − 1

]
= 1 + 2x− 2y

Problem 2

Consider the function f : R2 → R2 given by f(x, y) = (xy, x+ y).

(a) Compute the matrix of partial derivatives of f for an arbitrary point (x, y).

(b) Prove directly from the definition that f is differentiable at (0, 0). (Do not use the theorem that C1

implies differentiable.)

Solution

a)

Df(x, y) =

[
y x

1 1

]
b) If f is differentiable at (0, 0), then there exists a linear transformation T : Rn → Rm such that

lim
x→x0

∥f(x)− f(x0)− T (x− x0)∥
∥x− x0∥

= 0

We proved in class that the matrix for T, if it exists, is the matrix of partial derivatives Df(x, y). Thus,

1



Maxwell Lin MATH 222 — Homework #4 Problem 2 (continued)

lim
(x,y)→(0,0)

∥(xy, x+ y)− (0, 0)−
[
y x

1 1

]
((x, y)− (0, 0))∥

∥(x, y)− (0, 0)∥
= lim

(x,y)→(0,0)

∥(−xy, 0)∥
∥(x, y)∥

= lim
(x,y)→(0,0)

|xy|√
x2 + y2

We need to verify that lim(x,y)→(0,0)
|xy|√
x2+y2

= 0. That is, we must show that for ∀ε > 0, there ∃δ > 0

such that for all x where 0 < ∥(x, y)− (0, 0)∥ < δ,

∣∣∣∣ xy√
x2+y2

− 0

∣∣∣∣ < ε. We claim that δ = ε∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ = |x||y|√
x2 + y2

≤
√
x2 + y2

√
x2 + y2√

x2 + y2
=

√
x2 + y2 < δ = ε

The first inequality is reached since |x| ≤
√
x2 + y2. (Equality if y = 0, less than if y ̸= 0).

Thus, the limit is verified and f is differentiable at (0, 0).

Problem 3

Consider the function f : R2 → R given by

f(x, y) =

{
x3−y3

x2+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0).

(a) Using the results of the previous homework, show that f is continuous at (0, 0)

(b) For an arbitrary nonzero vector v⃗ =

[
a

b

]
∈ R2, compute Dv⃗f(0, 0).

(c) Is f differentiable at (0, 0)? Explain why or why not.

(d) Compute ∂f
∂x and ∂f

∂y .

(e) Show directly from (d) that ∂f
∂x is not continuous at (0, 0). (Hint: Consider the limits along the lines

x = 0 and y = 0.)

Solution

a) If f is continuous at (0, 0), lim(x,y)→(0,0) f(x, y) = f(0, 0). From HW 3, we have that

lim
(x,y)→(0,0)

x3 − y3

x2 + y2
= 0 = f(0, 0)

as required.

Problem 3 continued on next page. . . 2



Maxwell Lin MATH 222 — Homework #4 Problem 3 (continued)

b)

Dv⃗f(0, 0) = lim
h→0

f((0, 0) + h(a, b))− f(0, 0)

h

= lim
h→0

[
(ha)3−(hb)3

(ha)2+(hb)2

]
− 0

h

= lim
h→0

h3(a3 − b3)

h3(a2 + b2)

= lim
h→0

a3 − b3

a2 + b2

=
a3 − b3

a2 + b2

c) f is not differentiable at (0, 0). For f to be differentiable, Dv⃗f(0, 0) must exist for ∀v⃗ and v⃗ → Dv⃗f(0, 0)

must be linear. However,

[
a

b

]
7→ a3−b3

a2+b2 is not linear since

Dvf(0, 0) =
a3 − b3

a2 + b2
̸= a− b =

[
1 −1

] [a
b

]
= Df(0, 0)(v).

For instance, take (a, b) = (2, 1), and we can see

23 − 13

22 + 12
=

7

5
̸= 1.

d) First we compute ∂f
∂x . When (x, y) ̸= (0, 0),

∂f

∂x
(x, y) =

3x2(x2 + y2)− 2x(x3 − y3)

(x2 + y2)2

=
x4 + 3x2y2 + 2xy3

(x2 + y2)2

When (x, y) = (0, 0),

∂f

∂x
(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h

= lim
h→0

h3−03

h2+02 − 0

h

= lim
h→0

h

h

= 1

Thus,

∂f

∂x
=

{
x4+3x2y2+2xy3

(x2+y2)2 (x, y) ̸= (0, 0)

1 (x, y) = (0, 0)

Now we compute ∂f
∂y . When (x, y) ̸= (0, 0),

Problem 3 continued on next page. . . 3
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∂f

∂x
(x, y) =

−3y2(x2 + y2)− 2y(x3 − y3)

(x2 + y2)2

=
−y4 − 3y2x2 − 2yx3

(x2 + y2)2

When (x, y) = (0, 0),

∂f

∂x
(0, 0) = lim

h→0

f(0, 0 + h)− f(0, 0)

h

= lim
h→0

03−h3

02+h2 − 0

h

= lim
h→0

−h

h

= −1

Thus,

∂f

∂y
=

{
−y4−3y2x2−2yx3

(x2+y2)2 (x, y) ̸= (0, 0)

−1 (x, y) = (0, 0)

e) We have

∂f

∂x
=

{
x4+3x2y2+2xy3

(x2+y2)2 (x, y) ̸= (0, 0)

1 (x, y) = (0, 0)

If (x, y) approaches (0, 0) along the path x = 0, the limiting value is

lim
y→0

0

y4
= 0

If (x, y) approaches (0, 0) along the path y = 0, the limiting value is

lim
x→0

x4

x4
= 1

Since different paths to (0, 0) have different limits, lim(x,y)→(0,0)
∂f
∂x does not exist and therefore, ∂f

∂x is

not continuous at (0, 0).

Problem 4

Consider the function f : R → R given by

f(x) =

{
x2 sin

(
1
x

)
x ̸= 0

0 x = 0.

(a) Prove that f is differentiable everywhere, and give a formula for f ′. (Hint: To compute f ′(0), use the

limit definition of the derivative.)

(b) Prove that f ′ is not continuous at x = 0, and thus that f is not C1.

Solution

Problem 4 continued on next page. . . 4
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a) For x ̸= 0, we have

f ′(x) = 2x sin

(
1

x

)
− cos

(
1

x

)
For x = 0, we have

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h2 sin
(
1
h

)
− 0

h
= lim

h→0
h sin

(
1

h

)

Since −h ≤ h sin
(
1
h

)
≤ h and limh→0(−h) = limh→0(h) = 0, we have by the squeeze theorem that

limh→0 h sin
(
1
h

)
= 0.

Thus,

f ′(x) =

{
2x sin

(
1
x

)
− cos

(
1
x

)
x ̸= 0

0 x = 0

and f is differentiable everywhere.

b) Suppose that f ′ was continuous at x = 0 so that limx→0

[
2x sin

(
1
x

)
− cos

(
1
x

)]
exists and equals 0. We

also know that limx→0

[
2x sin

(
1
x

)]
exists and equals 0 since we can squeeze this function between −2x

and 2x. Thus,

0 = lim
x→0

[
2x sin

(
1

x

)
− cos

(
1

x

)]
− lim

x→0

[
2x sin

(
1

x

)]
= lim

x→0

[
2x sin

(
1

x

)
− cos

(
1

x

)
− 2x sin

(
1

x

)]
= lim

x→0

[
− cos

(
1

x

)]
.

However, this is a contradiction since we know that limx→0

[
− cos

(
1
x

)]
does not exist. (This limit is

equivalent to limx→∞ [− cos (x)] which does not exist since cos oscillates between −1 and 1 as x → ∞.)

Therefore, f ′ is not continuous at x = 0 and thus, f is not C1.

Problem 5

Consider the function f : R2 → R given by

f(x, y) =

{
x2y2

x2+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

Prove that f is C1 everywhere.

Solution
First we compute ∂f

∂x . If (x, y) ̸= (0, 0), we have

∂f

∂x
(x, y) =

2xy4

(x2 + y2)2

Problem 5 continued on next page. . . 5
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If (x, y) = (0, 0), we have

∂f

∂x
(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h

= lim
h→0

0− 0

h

= 0

Thus,

∂f

∂x
=

{
2xy4

(x2+y2)2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

We know that ∂f
∂x is continuous for all (x, y) ̸= (0, 0). We must check if ∂f

∂x is continuous at (0, 0).

We must show that lim(x,y)→(0,0)
∂f
∂x = 0. This means that we must show that for ∀ε > 0, there ∃δ > 0 such

that for all (x, y) where 0 < ∥(x, y)− (0, 0)∥ < δ,
∣∣∣ 2xy4

(x2+y2)2 − 0
∣∣∣ < ε. We claim that δ = ε

2 .∣∣∣∣ 2xy4

(x2 + y2)2
− 0

∣∣∣∣ ≤ 2(x2 + y2)5/2

(x2 + y2)2
= 2

√
x2 + y2 < 2δ = ε

as required.

Now we compute ∂f
∂y . If (x, y) ̸= (0, 0), we have

∂f

∂x
(x, y) =

2yx4

(x2 + y2)2

If (x, y) = (0, 0), we have

∂f

∂x
(0, 0) = lim

h→0

f(0, 0 + h)− f(0, 0)

h

= lim
h→0

0− 0

h

= 0

Thus,

∂f

∂x
=

{
2yx4

(x2+y2)2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

We know that ∂f
∂y is continuous for all (x, y) ̸= (0, 0). We must check if ∂f

∂y is continuous at (0, 0).

We must show that lim(x,y)→(0,0)
∂f
∂y = 0. This means that we must show that for ∀ε > 0, there ∃δ > 0 such

that for all (x, y) where 0 < ∥(x, y)− (0, 0)∥ < δ,
∣∣∣ 2yx4

(x2+y2)2 − 0
∣∣∣ < ε. We claim that δ = ε

2∣∣∣∣ 2yx4

(x2 + y2)2
− 0

∣∣∣∣ ≤ 2(x2 + y2)5/2

(x2 + y2)2
= 2

√
x2 + y2 < 2δ = ε

as required.

Since all partial derivatives of f exist and are continuous everyone, f is C1 everywhere.
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MATH 222 — Homework #5
Due February 15, 2023

Maxwell Lin

Problem 1

Section 2.4, #6.

Give a parametrization for each of the following curves:

(a) The line passing through (1, 2, 3) and (−2, 0, 7)

(b) The graph of f(x) = x2

(c) The square with vertices (0, 0), (0, 1), (1, 1), and (1, 0) (Break it up into line segments.)

(d) The ellipse given by x2

9 + y2

25 = 1

Solution

a) l : R → R3 given by

l(t) = (1, 2, 3) + (−3,−2, 4)t = (1− 3t, 2− 2t, 3 + 4t)

b) c : R → R2 given by

c(t) = (t, t2)

c) c : [0, 4) → R2 given by

c(t) =


(0, t) 0 ≤ t < 1

(t− 1, 1) 1 ≤ t < 2

(1,−t+ 3) 2 ≤ t < 3

(−t+ 4, 0) 3 ≤ t < 4

d) c : [0, 2π) → R2 given by

c(t) = (3 cos(t), 5 sin(t))

Problem 2

Section 2.4, #24.

Consider the spiral given by c(t) = (et cos(t), et sin(t)). Show that the angle between c and c′ is constant.

What is the angle between c and c′? Draw this curve.

Solution
Taking the 1st derivative gives us

c′(t) = (et cos(t)− et sin(t), et sin(t) + et cos(t))

= (et(cos(t)− sin(t)), et(sin(t) + cos(t))).

Thus, the angle between c and c′ is

θ = cos−1

(
c(t) · c′(t)

∥c(t)∥∥c′(t)∥

)
= cos−1

(
e2t√

e2t
√
2e2t

)
= cos−1

(
1√
2

)
=

π

4

1



Maxwell Lin MATH 222 — Homework #5 Problem 2 (continued)

a constant as required.

Problem 3

Section 2.5, #8.

Let f(u, v, w) = (eu−w, cos(v + u) + sin(u+ v + w)) and g(x, y) = (ex, cos(y − x), e−y). Calculate f ◦ g and

D(f ◦ g)(0, 0). Also compute Df and Dg at the relevant points and verify that the chain rule holds.

Solution
The function composition is

(f ◦ g)(x, y) = (ee
x−e−y

, cos(cos(y − x) + ex) + sin(ex + cos(y − x) + e−y)).

The derivative of f ◦ g at (0, 0) is

D(f ◦ g)(0, 0) =

[
ee

x−e−y

(ex) ee
x−e−y

(e−y)
∂(f◦g)2

∂x
∂(f◦g)2

∂y

]∣∣∣∣∣
(0,0)

=

[
1 1

− sin(2) + cos(3) − cos(3)

]
where

∂(f ◦ g)2
∂x

= − sin(cos(y − x) + ex)(sin(y − x) + ex) + cos(ex + cos(y − x) + e−y)(ex + sin(y − x))

Problem 3 continued on next page. . . 2
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∂(f ◦ g)2
∂y

= − sin(cos(y − x) + ex)(− sin(y − x)) + cos(ex + cos(y − x) + e−y)(− sin(y − x)− e−y)

The chain rule states that

D(f ◦ g)(0, 0) = Df(g(0, 0))Dg(0, 0)

= Df(1, 1, 1)Dg(0, 0) Since g(0, 0) = (1, 1, 1)

We have

Df(1, 1, 1) =

[
eu−w 0 −eu−w

− sin(v + u) + cos(u+ v + w) − sin(v + u) + cos(u+ v + w) cos(u+ v + w)

]∣∣∣∣
(1,1,1)

=

[
1 0 −1

− sin(2) + cos(3) − sin(2) + cos(3) cos(3)

]
and

Dg(0, 0) =

 ex 0

sin(y − x) − sin(y − x)

0 −e−y

∣∣∣∣∣∣
(0,0)

=

1 0

0 0

0 −1

 .

Thus,

D(f ◦ g)(0, 0) =
[

1 0 −1

− sin(2) + cos(3) − sin(2) + cos(3) cos(3)

]1 0

0 0

0 −1


=

[
1 1

− sin(2) + cos(3) − cos(3)

]
and the chain rule holds.

Problem 4

Section 2.5, #12.

Let h : R3 → R5 and g : R2 → R3 be given by h(x, y, z) =
(
xyz, exz, x sin(y), −9

x , 17
)
and g(u, v) =(

v2 + 2u, π, 2
√
u
)
. Find D(h ◦ g)(1, 1).

Solution
We proceed by the chain rule which states D(h ◦ g)(1, 1) = Dh(g(1, 1))Dg(1, 1). We have

Dh(g(1, 1)) = Dh(3, π, 2) =


yz xz xy

zexz 0 xexz

sin(y) x cos(y) 0
9
x2 0 0

0 0 0



∣∣∣∣∣∣∣∣∣∣∣
(3,π,2)

=


2π 6 3π

2e6 0 3e6

0 3 0

1 0 0

0 0 0



Problem 4 continued on next page. . . 3
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and

Dg(1, 1) =

 2 2v

0 0

u−1/2 0

∣∣∣∣∣∣
(1,1)

=

2 2

0 0

1 0

 .

Thus,

D(h ◦ g)(1, 1) =


2π 6 3π

2e6 0 3e6

0 3 0

1 0 0

0 0 0


2 2

0 0

1 0



=


7π 4π

7e6 4e6

0 0

2 2

0 0



Problem 5

Section 2.5, #22.

This exercise gives another example of the fact that the chain rule is not applicable if f is not differentiable.

Consider the function

f(x, y) =

{
xy2

x2+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

Show that

(a) ∂f/∂x and ∂f/∂y exist at (0, 0).

(b) If g(t) = (at, bt) for constants a and b, then f ◦ g is differentiable and (f ◦ g)′(0) = ab2/
(
a2 + b2

)
, but

∇f(0, 0) · g′(0) = 0.

Solution

(a) We have

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h

= lim
h→0

0− 0

h

= 0

and

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h

= lim
h→0

0− 0

h

= 0.

Problem 5 continued on next page. . . 4
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Thus, ∂f
∂x and ∂f

∂y exist at (0, 0).

(b) The composition of g with f is

(f ◦ g)(t) =

{
ab2t

a2+b2 t ̸= 0

0 t = 0

=
ab2t

a2 + b2

Thus, f ◦ g is differentiable where

(f ◦ g)′(t) = ab2

a2 + b2

However,

∇f(0, 0) · g′(0) =
[
0

0

]
·
[
a

b

]
= 0

Thus, the chain rule fails to hold, and we deduce that f cannot have been differentiable at (0, 0).

Problem 6

Section 4.2, #8.

Recall from Section 2.4 that a rolling circle of radius R traces out a cycloid, which can be parametrized by

c(t) = (Rt−R sin t, R−R cos t). One arch of the cycloid is completed from t = 0 to t = 2π. Show that the

length of this arch is always 4 times the diameter of the rolling circle.

Solution
The length of the arch is∫ 2π

0

∥c′(t)∥ dt =
∫ 2π

0

∥(R−R cos(t), R sin(t))∥ dt

=

∫ 2π

0

√
(R−R cos(t))2 + (R sin(t))2 dt

=

∫ 2π

0

√
R2 − 2R2 cos(t) +R2 cos2(t) +R2 sin2(t) dt

=

∫ 2π

0

√
R2(1− 2 cos(t) + cos2(t) + sin2(t)) dt

=

∫ 2π

0

√
R2(2− 2 cos(t)) dt

= R
√
2

∫ 2π

0

√
1− cos(t) dt

= 2R

∫ 2π

0

sin

(
t

2

)
dt Since sin

(
t

2

)
=

√
1− cos(t)

2

= −4R

[
cos

(
t

2

)]2π
0

= −4R [−1− 1]

= 8R

which is 4 times the diameter 2R as required.

5
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Problem 7

Let c : [a, b] → Rn be a continuously differentiable path, and let f : [p, q] → [a, b] be a continuously differen-

tiable function with the property that f ′(t) ≥ 0 for all t ∈ [p, q]. Prove that the arc lengths of c and c ◦ f
are equal.

Solution

Proof. To prove that the arc lengths of c and (c ◦ f) are equal we must show that
∫ b

a
∥c′(t)∥ dt =

∫ q

p
∥(c ◦

f)(t)∥ dt.

∫ q

p

∥(c ◦ f)(t)∥ dt =
∫ q

p

∥c′(f(t))f ′(t)∥ dt Chain rule

=

∫ q

p

∥c′(f(t))∥|f ′(t)| dt

=

∫ q

p

∥c′(f(t))∥f ′(t) dt Since f ′(t) ≥ 0

=

∫ f(q)

f(p)

∥c′(u)∥ du Let u = f(t)

=

∫ b

a

∥c′(u)∥ du

6



MATH 222 — Homework #6
Due March 2, 2023

Maxwell Lin

Problem 1

Section 3.1, #12. (You can read about the physical significance of the heat equation on page 154.)

(a) Show that T (x, t) = e−kt cosx satisfies the one-dimensional heat equation

k
∂2T

∂x2
=

∂T

∂t
.

(b) Show that T (x, y, t) = e−kt(cosx+ cos y) satisfies the two-dimensional heat equation

k

(
∂2T

∂x2
+

∂2T

∂y2

)
=

∂T

∂t
.

(c) Show that T (x, y, z, t) = e−kt(cosx+ cos y + cos z) satisfies the three-dimensional heat equation

k

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
=

∂T

∂t

Solution

(a) We have
∂T

∂t
= −ke−kt cosx

and

∂T

∂x
= −e−kt sinx

∂2T

∂x2
= −e−kt cosx

k
∂2T

∂x2
= −ke−kt cosx.

(b) We have
∂T

∂t
= −ke−kt(cosx+ cos y)

and

∂T

∂x
= −e−kt sinx

∂T

∂y
= −e−kt sin y

∂2T

∂x2
= −e−kt cosx

∂2T

∂y2
= −e−kt cos y

k

(
∂2T

∂x2
+

∂2T

∂y2

)
= −ke−kt(cosx+ cos y).

1
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(c) We have
∂T

∂t
= −ke−kt(cosx+ cos y + cos z)

and

∂T

∂x
= −e−kt sinx

∂T

∂y
= −e−kt sin y

∂T

∂z
= −e−kt sin z

∂2T

∂x2
= −e−kt cosx

∂2T

∂y2
= −e−kt cos y

∂2T

∂z2
= −e−kt cos z

k

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
= −ke−kt(cosx+ cos y + cos z).

Problem 2

Section 3.2, #4.

Determine the second-order Taylor formula for the given function about the given point (x0, y0).

f(x, y) = 1/
(
x2 + y2 + 1

)
, where x0 = 0, y0 = 0

Solution
The second-order Taylor formula for f(x, y) at (0, 0) is given by

f(h) = f(0, 0) +Df(0, 0)

[
x

y

]
+

1

2

[
x y

]
Hf(0, 0)

[
x

y

]
+R2(0, h)

where

lim
h→0

R2(0, h)

∥h∥2
= 0.

We have

Df(0, 0) =

[ −2x

(x2 + y2 + 1)2
−2y

(x2 + y2 + 1)2

]∣∣∣∣
(0,0)

=
[
0 0

]
and

Hf(0, 0) =


2(3x2 − y2 − 1)

(x2 + y2 + 1)3
8xy

(x2 + y2 + 1)3

8xy

(x2 + y2 + 1)3
2(3y2 − x2 − 1)

(x2 + y2 + 1)3


∣∣∣∣∣∣∣∣
(0,0)

=

[
−2 0

0 −2

]
Thus, we obtain

f(h) = 1− x2 − y2 +R2(0, h).

2
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Problem 3

Section 3.3, #6.

Find the critical points of the given function and then determine whether they are local maxima, local min-

ima, or saddle points.

f(x, y) = x2 − 3xy + 5x− 2y + 6y2 + 8

Solution
The critical points occur when

∇f(x, y) =

[
2x− 3y + 5

−3x− 2 + 12y

]
= 0

which only occurs at the point (−18
5 , −11

15 ). The Hessian at (−18
5 , −11

15 ) is

Hf

(
−18

5
,
−11

15

)
=

[
2 −3

−3 12

]
.

Since det(Hf(x, y)) = 15 > 0 and a = 2 > 0, we have that (−18
5 , −11

15 ) is a local minimum.

Problem 4

Section 3.3, #10.

Find the critical points of the given function and then determine whether they are local maxima, local min-

ima, or saddle points.

f(x, y) = y + x sin y

Solution
The critical points occur when

∇f(x, y) =

[
sin y

1 + x cos y

]
= 0.

We have that sin y = 0 whenever y = kπ for k ∈ Z. For x, there are two cases. If k is an even integer, then

cos y = cos kπ = 1 and x must be −1. If k is an odd integer, then cos y = cos kπ = −1 and x must be 1.

Thus, the critical points of f(x, y) are all points of the form

(x, y) =

{
(−1, kπ) k even integer

(1, kπ) k odd integer.

The Hessian is

Hf(x, y) =

[
0 cos y

cos y −x sin y

]
.

Since the period of sin and cos is 2π, there are only two cases. When k is even, we have

Hf(−1, kπ) =

[
0 1

1 0

]
.

When k is odd, we have

Hf(1, kπ) =

[
0 −1

−1 0

]
.

In both cases, the determinant is −1 < 0. Therefore, all critical points are saddle points.
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Problem 5

Section 3.3, #18.

Let f(x, y, z) = x2 + y2 + z2 + kyz.

(a) Verify that (0, 0, 0) is a critical point for f .

(b) Find all values of k such that f has a local minimum at (0, 0, 0).

Solution

(a) We have

∇f(0, 0, 0) =

 2x

2y + kz

2z + ky

∣∣∣∣∣∣
(0,0,0)

=

00
0

 .

as required.

(b) The Hessian of f at (0, 0, 0) is

Hf(0, 0, 0) =

2 0 0

0 2 k

0 k 2

 .

For Hf(0, 0, 0) to be positive-definite, the determinants of all the diagonal submatrices must be greater

than 0. We already have

det
([
2
])

> 0

and

det

([
2 0

0 2

])
> 0.

Thus, the only constraint is

det

2 0 0

0 2 k

0 k 2

 = 8− 2k2 > 0

−2 < k < 2

We must also check when the determinant is 0 which is when k = ±2. We then have

x2 + y2 + z2 + 2yz = x2 + (y + z)2

which is positive for all (x, y, z) ̸= 0. Therefore, f has a local minimum at (0, 0, 0) for all

−2 ≤ k ≤ 2.
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Problem 6

Section 3.3, #36.

Let n be an integer greater than 2 and set f(x, y) = axn + cyn, where ac ̸= 0. Determine the nature of the

critical points of f .

Solution
The critical points occur when

∇f(x, y) =

[
anxn−1

cnyn−1

]
= 0.

Thus, (0, 0) is the only critical point.

Now suppose n is even. If a and c are both positive, then (0, 0) is a local minimum since f > 0 for all

(x, y) ̸= 0. If a and c are both negative, then (0, 0) is a local maximum since f < 0 for all (x, y) ̸= 0. If

a and c have different signs, then (0, 0) is a saddle point since it is neither a local minimum or maximum.

(For example, suppose a was negative and c was positive. If we observe the cross-section x = 0, then (0, 0)

would be a local minimum. If instead, we observe the cross-section y = 0, (0, 0) would be a local maximum.

Thus, there is no neighborhood containing (0, 0) so that all f(x, y) ≥ 0 or all f(x, y) ≤ 0. Therefore, (0, 0)

is a saddle point.)

Now suppose n is odd. Regardless of a and c, (0, 0) is a saddle point since there always exists values of (x, y)

near (0, 0) such that f is greater than 0 and less than 0. For example, along the path y = 0, f < 0 for all

x < 0 and f > 0 for all x > 0. (This is assuming a was positive. If a was negative, f > 0 for all x < 0 and

f < 0 for all x > 0.)

Problem 7

Consider the quadratic form f(x, y) = 5x2 − 8xy + 5y2.

(a) Find the symmetric matrix A such that f(x) = xTAx.

(b) Find an orthonormal basis (v1,v2) for R2 consisting of eigenvectors for A, along with their corresponding

eigenvalues.

(c) Express the function f using (v1,v2) coordinates.

(d) Draw the level sets f(x, y) = c for c = −1, 0, 1. (Hint: It helps to draw a second set of axes corresponding

to the orthonormal basis of eigenvectors, and then draw the level sets with respect to these axes.)

(e) Suppose g : R2 → R is a C2 function, and for some critical point x0 of g, the Hessian of g at x0 is equal

to the matrix A. Does g have a local minimum, local maximum, or saddle point at x0?

Solution

(a)

A =

[
5 −4

−4 5

]

(b) We have v1 =
(

1√
2
, 1√

2

)
with λ1 = 1 and v2 =

(
1√
2
, −1√

2

)
with λ2 = 9.

(c) Let

P =

[
1√
2

1√
2

1√
2

− 1√
2

]
and Λ =

[
1 0

0 9

]

Problem 7 continued on next page. . . 5
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f(x, y) = xTAx

= xTPΛPTx

= vTΛv

= v21 + 9v22

(d)

(e) g must have a local minimum at x0 since Hg(x0) is positive-definite as det(Hg(x0)) = 9 > 0 and

a = 5 > 0.

6



MATH 222 — Homework #7
Due March 9, 2023

Maxwell Lin

Problem 1

Section 3.3, #28

Find the point on the plane 2x− y + 2z = 20 nearest the origin.

Solution
Each point on the plane is of the form (x, y,−x+ y

2 + 10). The distance from this point to the origin is

d(x, y) =

√
x2 + y2 +

(
−x+

y

2
+ 10

)2
.

Minimizing this function is equivalent to minimizing the function

d∗(x, y) = d(x, y)2 = x2 + y2 +
(
−x+

y

2
+ 10

)2
since d(x, y)2 ≥ d(x0, y0)

2 ⇐⇒ d(x, y) ≥ d(x0, y0). The critical points of d∗ occur when

∇d∗(x, y) =

[
4x− 20− y
10
4 y + 10− x

]
= 0

which only occurs at the point
(
40
9 , −20

9

)
. The Hessian at this point is

Hd∗
(
40

9
,
−20

9

)
=

[
4 −1

−1 10
4

]
.

Since detHd∗( 409 , −20
9 ) > 0 and a > 0, we confirm that

(
40
9 , −20

9

)
is a local minimum and that

(
40

9
,
−20

9
,
40

9

)
is the point on the plane nearest the origin.

Problem 2

Section 3.3, #29

Show that a rectangular box of given volume has minimum surface area when the box is a cube.

Solution
Suppose the rectangular box has a positive volume of c = xyz. The surface area is

A(x, y, z) = 2xy + 2yz + 2xz.

Letting z = c
xy , we equivalently obtain

A(x, y) = 2xy +
2c

x
+

2c

y
.

1
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The critical points of A occur when

∇A(x, y) =

[
2y − 2c

x2

2x− 2c
y2

]
= 0.

From ∂A
∂x = 0, we obtain y = c

x2 . This implies y2 = c2

x4 . By substituting into ∂A
∂y = 0, we obtain

2x− 2c

(
x4

c2

)
= 0

2x− 2x4

c
= 0

2x

(
1− x3

c

)
= 0

which implies that either

x = 0 or x = c1/3.

Since c = xyz > 0 we must have that x = c1/3. Substituting this into ∂A
∂x = 0, we obtain

2y − 2c

(c1/3)2
= 0

y = c1/3.

Lastly, substituting x = y = c1/3 into xyz = c we obtain

(c1/3)(c1/3)z = c

z = c1/3.

Therefore, the only critical point occurs when x = y = z = c1/3. By computing the Hessian of A at

(c1/3, c1/3) we obtain

HA(c1/3, c1/3) =

[
4c
x3 2

2 4c
y3

]∣∣∣∣∣
(c1/3,c1/3)

=

[
4 2

2 4

]
.

Since det(HA(c1/3, c1/3)) > 0 and a > 0, this critical point is a relative minimum of A. Thus, surface area

is minimized when x = y = z, that is, when the box is a cube.

Problem 3

Section 3.3, #34

Let f(x, y) = 5yex − e5x − y5.

(a) Show that f has a unique critical point and that this point is a local maximum for f .

(b) Show that f is unbounded on the y axis, and thus has no global maximum. [Note that for a function

g(x) of a single variable, a unique critical point which is a local extremum is necessarily a global extremum.

This example shows that this is not the case for functions of several variables.]

Solution

Problem 3 continued on next page. . . 2
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(a) The critical points of f occur when

∇f(x, y) =

[
5yex − 5e5x

5ex − 5y4

]
= 0.

We can rewrite ∂f
∂x = 0 as y = e4x. Substituting this into ∂f

∂y = 0, we obtain

5ex − 5(e4x)4 = 0

5ex − 5e16x = 0

ex = e16x

x = 16x

x = 0.

Thus, the only critical point occurs at (0, 1). The Hessian of f at (0, 1) is

Hf(0, 1) =

[
5yex − 25e5x 5ex

5ex −20y3

]∣∣∣∣
(0,1)

=

[
−20 5

5 −20

]
.

Since det(Hf(0, 1)) > 0 and a < 0, (0, 1) is a local maximum for f .

(b) Along the y-axis, x = 0 and we have

f(0, y) = 5y − 1− y5.

We have that

lim
y→∞

f(0, y) = −∞ and lim
y→−∞

f(0, y) = ∞.

Therefore, f is unbounded on the y-axis, and thus has no global maximum.

Problem 4

Section 3.4, #6.

Find the extrema of f subject to the stated constraints.

f(x, y, z) = x+ y + z, subject to x2 − y2 = 1, 2x+ z = 1

Solution
The constraint is

g(x, y) =

[
x2 − y2 − 1

2x+ z − 1

]
= 0.

We must find all local extrema of f |S where S = g−1(0). If f |s has local extrema at (x, y), then there exist

x, y, λ1, and λ2 so that

∇f(x, y) = λ1∇g1(x, y) + λ2∇g2(x, y),

g1(x, y) = 0,

g2(x, y) = 0.

Problem 4 continued on next page. . . 3
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Computing the gradients and equating components, we obtain

1 = λ12x+ λ22 (1)

1 = λ1(−2y) (2)

1 = λ2 (3)

x2 − y2 = 1 (4)

2x+ z = 1. (5)

Substituting equation (3) into equation (1) and rewriting equation (2) we obtain,

−1 = λ12x (6)

−1 = λ12y. (7)

Thus, equating equations (1) and (2), we obtain

λ12x = λ12y. (8)

Suppose λ1 ̸= 0. Then we can divide equation (8) by 2λ1 and obtain x = y. However, substituting x = y

into equation (4) results in x2 − x2 = 1, a contradiction. Now suppose λ1 = 0. Then, substituting into

equations (6) and (7), we obtain −1 = 0, a contradiction. Therefore, there is no λ1 for which this set of

equations is consistent and therefore, there do not exist any extrema of f subject to the stated constraints.

Problem 5

Section 3.4, #10. (You can do this either by parametrizing S or by thinking of it as a level set of some

function on R2.)

Find the relative extrema of f | S.
f : R2 → R, (x, y) 7→ x2 − y2, S = {(x, cosx) | x ∈ R}.

Solution
Let c(t) = (t, cos t). Then

f(c(t)) = t2 − cos2(t).

The relative extrema occur when

Df(c(t)) = 2t+ 2(cos t)(sin t) = 0

2t+ sin(2t) = 0

−2t = sin(2t)

t = 0.

Applying the second derivative test at t = 0 results in

DDf(c(0)) = 2 + 2 cos(2t)|0
= 4 > 0.

Therefore, the only extrema of f |S is (0, 1) which is a relative minimum.

4
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Problem 6

Section 3.4, #24

Find the absolute maximum and minimum for the function f(x, y, z) = x + yz on the ball B = {(x, y, z) |
x2 + y2 + z2 ≤ 1}

Solution
We know the global maximum and minimum exist for f |B since f is continuous and B is compact. First we

locate all critical points of f in the open set U = {(x, y, z) | x2 + y2 + z2 < 1}. Critical points occur when

∇f =

1z
y

 = 0

which never occurs so there are no critical points in U .

Now we locate all critical points of f in the boundary ∂U = {(x, y, z) | x2 + y2 + z2 = 1}.
By the Lagrange multiplier theorem, we obtain the set of equations

1 = λ2x (1)

z = λ2y (2)

y = λ2z (3)

x2 + y2 + z2 = 1. (4)

Substituting equation (3) in equation (4), we obtain

z = λ2(λ2z)

z = 4λ2z

λ = ±1

2
assuming z ̸= 0.

Substituting into equation (1), we obtain x = ±1. Substituting into equation (4), we obtain y = z = 0. (If

instead z = 0, we would receive the same result.) Evaluating f at these critical points, we obtain

f(1, 0, 0) = 1

f(−1, 0, 0) = −1.

Therefore 1 is the absolute maximum occurring at (1, 0, 0) and −1 is the absolute minimum occurring at

(−1, 0, 0).

Problem 7

Suppose C1, C2, C3, · · · ⊂ Rn are any collection of closed sets. (This could be a collection of finitely many

or infinitely many sets.) Show that the intersection
⋂

i Ci is closed. Likewise, show that if C1, C2, C3, . . . are

compact sets, then
⋂

i Ci is compact. (Hint: use a corresponding statement about open sets proven in HW 2.)

Solution
First we prove that (

⋂
i Ci)

′ =
⋃

i C
′
i.

Problem 7 continued on next page. . . 5
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Proof 1.

x ∈

(⋂
i

Ci

)′

⇐⇒ ¬(x ∈ Ci ∀i)

⇐⇒ x /∈ Ci ∃i
⇐⇒ x ∈ C ′

i ∃i

⇐⇒ x ∈
⋃
i

C ′
i.

Since each set is contained within the other, (
⋂

i Ci)
′ =

⋃
i C

′
i.

Proof 2. From HW 2, we know that the infinite union of open sets is open. Thus,
⋃

i C
′
i is open since the

complement of an closed set is open. Therefore, (
⋂

i Ci)
′ =

⋃
i C

′
i is open. Taking the complement, we get

that
⋂

i Ci is closed as required.

Proof 3. We have already shown that C =
⋂

i Ci is closed. Therefore, to show that C is compact, we must

prove that C is bounded. Suppose x ∈ C. We need to show that there exists R > 0 such that ∥x∥ < R.

Since C =
⋂

i Ci ⊂ Ci for ∀i, we also have that x ∈ Ci. Since Ci is bounded (since it is compact), there

exists some Ri such that ∥x∥ < Ri. Therefore, C is both closed and bounded, and therefore compact.

Problem 8

Consider Example 4 on page 190. Let

S = {(x, y, z) | xy + yz + xz = 5, x ≥ 0, y ≥ 0, z ≥ 0}

and let f(x, y, z) = xyz. As outlined in class, we will prove carefully that the function f actually achieves a

global maximum on S, which must then be the value that is found in the example.

(a) Show that if (x, y, z) ∈ S, and x, y, z are all nonzero, then

f(x, y, z) < min{25/x, 25/y, 25/z}.

(b) Let

S′ = {(x, y, z) ∈ S | x ≤ 25, y ≤ 25, z ≤ 25}

Show that S′ is compact, and hence that f |S′ attains a maximum on S′. (Hint: Use Problem 7.) Show that

this maximum is at least 2.

(c) Show that if (x, y, z) is a point of S not in S′, then f(x, y, z) < 1.

(d) Deduce that f has a global maximum on S.

Solution

(a) We must show that xyz is less than 25/x, 25/y, and 25/z. We have that

(xy − xz)2 = x2y2 − 2x2yz + x2z2 ≥ 0

(xy + xz)2 = x2y2 + 2x2yz + x2z2 ≥ 4x2yz add 4x2yz to both sides

25 = (xy + yz + xz)2 > (xy + xz)2 ≥ 4x2yz since yz positive

25

x
>

25

4x
> xyz since x positive.

Since f and S are symmetric with regards to x, y, and z, the same reasoning will show that xyz is less

than 25/y and 25/z. Therefore, f(x, y, z) < min{25/x, 25/y, 25/z}.

Problem 8 continued on next page. . . 6
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(b) S′ is bounded since ∥(x, y, z)∥ ≤
√
(252) + (252) + (252) for all (x, y, z) ∈ S′.

Consider
C1 =

{
(x, y, z) ∈ R3 | 0 ≤ x ≤ 25

}
C2 =

{
(x, y, z) ∈ R3 | 0 ≤ y ≤ 25

}
C3 =

{
(x, y, z) ∈ R3 | 0 ≤ z ≤ 25

}
T =

{
(x, y, z) ∈ R3 | xy + yz + xz = 5

}
.

Note that S′ = C1 ∩ C2 ∩ C3 ∩ T . We have that T is a closed set (since it is a level set of a continuous

function) and that Ci is a closed set since it includes the boundary. Thus, by Problem 7, S′ is closed

since the intersection of closed sets is closed. Since, S′ is bounded and closed, it is compact. Since S′ is

compact and f is continuous, f |S′ attains a maximum on S′.

By the Lagrange multiplier theorem, we obtain the set of equations

yz = λ(y + z) (1)

xz = λ(x+ z) (2)

xy = λ(x+ y) (3)

xy + yz + xz = 5. (4)

We know x ̸= 0 since if x = 0, then yz = 5 (equation 4) and 0 = λz (equation 2). This implies that

λ = 0 since z ̸= 0. But, this leads to a contradiction since yz = 0 (equation 1). By the same reasoning,

y ̸= 0 and z ̸= 0.

Elimination of λ in equations (1) and (2) as well as (2) and (3) results in

yz

y + z
=

xz

x+ z
=⇒ x = y (5)

xz

x+ z
=

xy

x+ y
=⇒ y = z. (6)

Therefore, from equation (4) we obtain that x = y = z =
√

5
3 . Since

(√
5
3 ,
√

5
3 ,
√

5
3

)
∈ S′, we have that

the maximum of f on S′ is
(
5
3

)3/2 ≈ 2.151 > 2 as required.

(c) If (x, y, z) ∈ S \ S′, then x > 25, y > 25, or z > 25. Let us assume x > 25. From part (a), we know

that f(x, y, z) < min{25/x, 25/y, 25/z} ≤ 25/x < 1. By the same reasoning, f(x, y, z) < 1 if y > 25 or

z > 25 instead.

(d) By part (b), there is some x0 ∈ S′ such that f (x0) ≥ 2 and for every a ∈ S′, f(a) ≤ f (x0). By part

(c), for every b ∈ S \ S′, we have f(b) < 1 < 2 ≤ f (x0). Combining these statements shows that

f(x) ≤ f (x0) for every x ∈ S, and hence f has a global maximum at x0.

7



MATH 222 — Homework #8
Due March 23, 2023

Maxwell Lin

Problem 1

Section 5.2, #4

Evaluate over the region R: ∫∫
R

y

1 + x2
dx dy, R : [0, 1]× [−2, 2]

Solution ∫ 2

−2

∫ 1

0

y

1 + x2
dx dy =

∫ 2

−2

y [arctanx]
1
x=0 dy

=
π

4

∫ 2

−2

y dy

=
π

4

[
y2

2

]2
y=−2

=
π

4
(0)

= 0.

Problem 2

Section 5.2, #9

Let f be continuous on [a, b] and g continuous on [c, d]. Show that∫∫
R

[f(x)g(y)] dx dy =

[∫ b

a

f(x) dx

][∫ d

c

g(y) dy

]
where R = [a, b]× [c, d].

Solution

Proof. Since f is continuous on [a, b] and g is continuous on [c, d], f(x)g(y) is continuous on R. By Fubini’s

Theorem, ∫∫
R

[f(x)g(y)] dx dy =

∫ d

c

[∫ b

a

f(x)g(y) dx

]
dy.

When we evaluate this integral, we first hold y fixed and integrate with respect to x. Since y is fixed, g(y)

is a constant. Therefore, by the homogeneity of integrals,∫ d

c

[∫ b

a

f(x)g(y) dx

]
dy =

∫ d

c

g(y)

[∫ b

a

f(x) dx

]
dy.

1
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Likewise, since the inner integral does not contain any y, it is constant and we obtain∫ d

c

g(y)

[∫ b

a

f(x) dx

]
dy =

[∫ b

a

f(x) dx

][∫ d

c

g(y) dy

]
.

Problem 3

Section 5.3, #4(a, c, d)

Evaluate the following integrals and sketch the corresponding regions.

(a)
∫ 2

−3

∫ y2

0

(
x2 + y

)
dx dy

(c)
∫ 1

0

∫ (1−x2)
1/2

0 dy dx

(d)
∫ π/2

0

∫ cos x

0
y sinx dy dx

Solution

(a) We have ∫ 2

−3

∫ y2

0

(
x2 + y

)
dx dy =

∫ 2

−3

[
x3

3
+ yx

]y2

x=0

dy

=

∫ 2

−3

y6

3
+ y3 dy

=

[
y7

21
+

y4

4

]2
y=−3

=
7895

84
.

Problem 3 continued on next page. . . 2
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(c) We have

∫ 1

0

∫ (1−x2)
1/2

0

dy dx =

∫ 1

0

(1− x2)1/2 dx

=

∫ 0

π/2

(1− cos2 θ)1/2(− sin θ) dθ substituting x = cos θ

= −
∫ 0

π/2

sin2 θ dθ using sin2 θ + cos2 θ = 1

= −
∫ 0

π/2

1

2
− cos(2θ)

2
dθ

= −
[
θ

2
− sin(2θ)

4

]0
θ=π/2

=
π

4
.

Problem 3 continued on next page. . . 3
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(d) We have

∫ π/2

0

∫ cos x

0

y sinx dy dx =

∫ π/2

0

[
y2

2
sinx

]cos x
y=0

dx

=

∫ π/2

0

(cosx)2 sinx

2
dx

= −1

2

∫ 0

1

u2 du substituting u = cosx

= −1

2

[
u3

3

]0
u=1

=
1

6
.

Problem 3 continued on next page. . . 4
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Problem 4

Section 5.3, #12

Evaluate the following double integral: ∫∫
D

cos y dx dy

where the region D is bounded by y = 2x, y = x, x = π, and x = 2π

Solution
We have ∫∫

D

cos y dx dy =

∫ 2π

π

∫ 2x

x

cos y dy dx

=

∫ 2π

π

[sin y]
2x
y=x dx

=

∫ 2π

π

sin(2x)− sinx dx

=

[
− cos(2x)

2
+ cosx

]2π
x=π

= 2.

5
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Problem 5

Section 5.4, #4(a, c)

Find

(a)
∫ 1

−1

∫ 1

|y|(x+ y)2 dx dy

(c)
∫ 4

0

∫ 2

y/2
ex

2

dx dy

Solution

(a) We have ∫ 1

−1

∫ 1

|y|
(x+ y)2 dx dy =

∫ 1

0

∫ x

−x

(x+ y)2 dy dx

=

∫ 1

0

[
x2y + xy2 +

y3

3

]x
y=−x

dx

=

∫ 1

0

8x3

3
dx

=

[
2x4

3

]1
x=0

=
2

3
.

(c) We have ∫ 4

0

∫ 2

y/2

ex
2

dx dy =

∫ 2

0

∫ 2x

0

ex
2

dy dx

=

∫ 2

0

2xex
2

dx

=

∫ 4

0

eu du substituting u = x2

= e4 − 1.

Problem 5 continued on next page. . . 6
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Problem 6

Section 5.5, #15∫ 1

0

∫ 2

1

∫ 3

2
cos[π(x+ y + z)] dx dy dz

Solution
We have∫ 1

0

∫ 2

1

∫ 3

2

cos[π(x+ y + z)] dx dy dz =

∫ 1

0

∫ 2

1

[
sin(xπ + yπ + zπ)

π

]3
x=2

dy dz

=

∫ 1

0

∫ 2

1

sin(3π + yπ + zπ)

π
− sin(2π + yπ + zπ)

π
dy dz

=

∫ 1

0

[
− cos(3π + yπ + zπ)

π2
+

cos(2π + yπ + zπ)

π2

]2
y=1

dz

=

∫ 1

0

− cos(5π + zπ)

π2
+

2 cos(4π + zπ)

π2
− cos(3π + zπ)

π2
dz

=

[
− sin(5π + zπ)

π3
+

2 sin(4π + zπ)

π3
− sin(3π + zπ)

π3

]1
z=0

= 0 since each term is 0.

Problem 7

Compute the volume of the 3-dimensional ball of radius R, BR = {(x, y, z) | x2 + y2 + z2 ≤ R2
}
, in the

following three ways (and check that your answers agree):

(a) Using Cavalieri’s principle, as an integral of the area of the cross-sectional circles perpendicular to the

x-axis, ranging from x = −R to x = R.

(b) As twice the volume of the region below the graph of z =
√
R2 − x2 − y2 lying above the disk of radius

R.

(c) As the value of the constant function 1 integrated over B.

Solution

(a) The volume of BR is ∫ R

−R

πr2 dx

Problem 7 continued on next page. . . 7
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where r is the radius of the cross-sectional circle perpendicular to the x-axis for fixed x. Since x2 + y2 +

z2 ≤ R2, we have y2 + z2 ≤ R2 − x2. Thus, r =
√
R2 − x2.

Substituting we obtain, ∫ R

−R

π(R2 − x2) dx =

[
πR2x− πx3

3

]R
x=−R

=
4

3
πR3.

(b) We have that

DR =

{
(x, y)

∣∣∣∣∣ −R ≤ x ≤ R

−
√
R2 − x2 ≤ y ≤

√
R2 − x2

}
.

Thus, the volume of BR is

2

∫ R

−R

∫ √
R2−x2

−
√
R2−x2

√
R2 − x2 − y2 dy dx.

First, we compute the inner integral.∫ √
R2−x2

−
√
R2−x2

√
R2 − x2 − y2 dy =

∫ r

−r

√
r2 − y2 dy Let r =

√
R2 − x2.

=

∫ π/2

−π/2

√
r2 − r2 sin2 θ(r cos θ) dθ Let y = r sin θ

=

∫ π/2

−π/2

√
r2 cos2 θ(r cos θ) dθ since sin2 θ + cos2 θ = 1

=

∫ π/2

−π/2

|r cos θ|(r cos θ) dθ

=

∫ π/2

−π/2

r2 cos2 θ dθ since cos θ ≥ 0 on [−π/2, π/2]

= r2
∫ π/2

−π/2

cos(2θ) + 1

2
dθ since cos(2θ) = 2 cos2 θ − 1

=
r2

2

[
sin(2θ)

2
+ θ

]π/2
−π/2

=
πr2

2
.

Now, we compute the outer integral.∫ R

−R

πr2

2
dx =

1

2

∫ R

−R

πr2 dx =
1

2

[
4

3
πR3

]
Part (a).

Multiplying by 2, we obtain 4
3πR

3 as required.

(c) We have that

BR =

(x, y, z)

∣∣∣∣∣∣∣∣
−R ≤ x ≤ R

−
√

R2 − x2 ≤ y ≤
√

R2 − x2

−
√
R2 − x2 − y2 ≤ z ≤

√
R2 − x2 − y2

 .

Problem 7 continued on next page. . . 8



Maxwell Lin MATH 222 — Homework #8 Problem 7 (continued)

Therefore, the volume of BR is∫ R

−R

∫ √
R2−x2

−
√
R2−x2

∫ √
R2−x2−y2

−
√

R2−x2−y2

1 dz dy dx = 2

∫ R

−R

∫ √
R2−x2

−
√
R2−x2

√
R2 − x2 − y2 dy dx

=
4

3
πR3 Part (b).

Problem 8

Viewing your answer to the previous problem as a function of R, compute its derivative with respect to R,

and give a geometric interpretation for what this derivative represents. (You may have encountered this

formula before.) Do the same thing with the formula for the area of a circle.

Solution
We have

d

dR

[
4

3
πR3

]
= 4πR2 Surface area of a sphere

d

dr

[
πr2

]
= 2πr Circumference of a circle

The definition of the derivative states

f ′(R) = lim
h→0

f(R+ h)− f(R)

h
.

That is

f ′(R)h ≈ f(R+ h)− f(R)

for small values of h.

Geometrically, we add a thin shell of thickness h around a sphere (or circle) of radius R. Since h is small,

this added volume should approximately equal the surface area, f ′(R), multiplied by the added thickness h.

9



MATH 222 — Homework #9
Due April 6, 2023

Maxwell Lin

Problem 1

Section 6.1, #8

Let D∗ be the parallelogram bounded by the lines y = 3x − 4, y = 3x, y = 1
2x, and y = 1

2 (x + 4). Let

D = [0, 1]× [0, 1]. Find a T such that D is the image of D∗ under T .

Solution
Since both D∗ and D are parallelograms, one such T is a linear transformation that maps the vertices of D∗

to D. Thus, we have

T (0, 0) = (0, 0) (1)

T (4/5, 12/5) = (0, 1) (2)

T (12/5, 16/5) = (1, 1) (3)

T (8/5, 4/5) = (1, 0). (4)

Reading off equations (2) and (4) give us the matrix A−1 for T−1

A−1 =
[
T−1(e1) T−1(e2)

]
=

[
8/5 4/5

4/5 12/5

]
.

Inverting A gives us

A =

[
3/4 −1/4

−1/4 1/2

]
.

Thus, T is given as

T (x, y) =

(
3

4
x− 1

4
y,−1

4
x+

1

2
y

)
.

Problem 2

Section 6.2, #2

Suggest a substitution/transformation that will simplify the following integrands, and find their Jacobians.

(a)
∫∫

R
(5x+ y)3(x+ 9y)4dA

(b)
∫∫

R
x sin(6x+ 7y)− 3y sin(6x+ 7y)dA

Solution

(a) A good substitution may be

u = 5x+ y

v = x+ 9y.

That is,

T−1(x, y) = (5x+ y, x+ 9y).

1



Maxwell Lin MATH 222 — Homework #9 Problem 2 (continued)

The Jacobian determinant of T is

|det(DT )| =
∣∣∣∣ 1

det(DT−1)

∣∣∣∣ = 1

44
.

(b) The integrand can be rewritten as

x sin(6x+ 7y)− 3y sin(6x+ 7y) = sin(6x+ 7y)(x− 3y)

Thus, a good substitution may be

u = 6x+ 7y

v = x− 3y.

That is,

T−1(x, y) = (6x+ 7y, x− 3y).

The Jacobian determinant of T is

|det(DT )| =
∣∣∣∣ 1

det(DT−1)

∣∣∣∣ = 1

25
.

Problem 3

Let D be the region 0 ≤ y ≤ x and 0 ≤ x ≤ 1. Evaluate∫∫
D

(x+ y) dx dy

by making the change of variables x = u + v, y = u − v. Check your answer by evaluating the integral

directly by using an iterated integral.

Solution
The transformation T is

T (u, v) = (u+ v, u− v)

which has the Jacobian determinant 2. Since T is bijective, we can solve for T−1

T−1(x, y) =

(
1

2
x+

1

2
y,

1

2
x− 1

2
y

)
Since T is a linear transformation, it maps lines to lines. Thus, using T−1 we observe that T maps the

triangle with vertices (0, 0), (1, 0) and (1/2, 1/2) to D.

Problem 3 continued on next page. . . 2



Maxwell Lin MATH 222 — Homework #9 Problem 3 (continued)

Therefore, we have

∫∫
D

(x+ y) dx dy =

∫ 1/2

0

∫ 1−v

v

4u du dv

=

∫ 1/2

0

[
2u2

]u=1−v

u=v
dv

=

∫ 1/2

0

2(1− 2v) dv

= 2[v − v2]
1/2
0

=
1

2
.

Now we evaluate the integral directly.∫∫
D

(x+ y) dx dy =

∫ 1

0

∫ x

0

x+ y dy dx

=

∫ 1

0

[
xy +

y2

2

]y=x

y=0

dx

=

∫ 1

0

3x2

2
dx

=

[
x3

2

]1
0

=
1

2

as required.

Problem 4

Section 6.2, #8

Problem 4 continued on next page. . . 3
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Define T (u, v) =
(
u2 − v2, 2uv

)
. Let D∗ be the set of (u, v) with u2+v2 ≤ 1, u ≥ 0, v ≥ 0. Find T (D∗) = D.

Evaluate
∫ ∫

D
dx dy.

Solution
We can transform D∗ into polar coordinates with the transformation (u, v) = P (r, θ) = (r cos θ, r sin θ). We

obtain

u2 + v2 = r2 ≤ 1

u = r cos θ ≥ 0 v = r sin θ ≥ 0

and thus,

D′ =

(r, θ)

∣∣∣∣∣∣
0 ≤ r ≤ 1

0 ≤ θ ≤ π

2

 .

Therefore, to determine T (D∗) we can equivalently solve for T (P (D′)) where D′ is D∗ expressed in polar

coordinates. We have

(T ◦ P ) = ((r cos θ)2 − (r sin θ)2, 2r2 cos θ sin θ)

= r2(cos(2θ), sin(2θ)).

That is, T (D∗) = (T ◦ P )(D′) is the closed region of radius 1 from angle 0 to π—the top half of the unit

circle.

D =

{
(x, y)

∣∣∣∣∣ − 1 ≤ x ≤ 1

0 ≤ y ≤
√

1− x2

}
With this geometric picture,

∫∫
D

dx dy must be π/2. We evaluate

det(DT ) =

[
2u −2v

2v 2u

]
= 4(u2 + v2).

Since det(DT ) = 0 only at (0, 0) which is on the boundary of D∗, we can change variables as follows

∫∫
D

dx dy =

∫∫
D∗

4(u2 + v2) du dv

=

∫ π/2

0

∫ 1

0

4r2(r) dr dθ

=
π

2

as required.

Problem 5

In this problem, we will compute the formula for the n-dimensional volume of an n-dimensional ball of radius

R,

Dn
R = {x ∈ Rn | ∥x∥ ≤ R} .

Let Vn(R) be the volume of this ball, i.e.

Vn(R) =

∫
Dn

R

1dV

Problem 5 continued on next page. . . 4
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Write Dn for Dn
1 , and let αn = Vn(1).

(a) What are α1, α2, and α3?

(b) Prove that for any R > 0, we have

Vn(R) = αnR
n

(Hint: Use the function T : Dn
1 → Dn

R given by T (x) = Rx and the change-of-coordinates formula.)

(c) Prove that for any n ≥ 3, we have

Vn(R) =

∫
D2

R

Vn−2

(√
R2 − x2 − y2

)
dA.

By computing this integral using polar coordinates and the formula from part (b), show that

Vn(R) =
2πR2

n
Vn−2(R).

(d) When n is even, show that

αn =
πn/2

(n/2)!
,

and hence

Vn(R) =
πn/2

(n/2)!
Rn.

Note: There is a smooth function called Γ, known as Euler’s Gamma function, which is defined for all

non-negative real numbers and ”connects the dots” of the factorial function: when n is a positive integer,

it satisfies Γ(n) = (n − 1)!, and for all real numbers, it has Γ(x + 1) = xΓ(x). The above formula then

generalizes to

Vn(R) =
πn/2

Γ
(
n
2 + 1

)Rn

which now makes sense for both even and odd n. To learn more about Γ, you should take Math 333 (Complex

Analysis).

(e) Deduce that the limit as n → ∞ of αn, taken over all even n, is 0 .

(f) In Homework 1, we defined the n-dimensional cube

Cn = {x ∈ Rn||xi |≤ 1 for all i = 1, . . . , n}

in which Dn is inscribed. (That is, we saw that Dn ⊂ Cn, but that Dn
R ̸⊂ Cn for R > 1.) What is the

volume of Cn ? How does this behave as n → ∞?

Solution

(a) We have

α1 = V1(1) =

∫
D1

1

1 dv

=

∫ 1

−1

1 dx

= 2

Problem 5 continued on next page. . . 5
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α2 = V2(1) =

∫
D2

1

1 dv

=

∫ 2π

0

∫ 1

0

r dr dθ

=

∫ 2π

0

1

2
dθ

= π

α3 = V3(1) =

∫
D3

1

1 dv

=
4π

3
HW 8 Problem 7.

(b) The transformation T is

T (x1, . . . , xn) = (Rx1, . . . , Rxn).

The Jacobian is

DT =


R 0 0 · · · 0

0 R 0 · · · 0

0 0 R · · · 0
...

...
...

. . .

0 0 0 · · · R

 = RI.

Since this matrix can be obtained by multiplying each row of the identity matrix by R, we have that

det(DT ) = Rn det(I) = Rn.

Thus, we have

Vn(R) =

∫
Dn

R

1 dV

=

∫
Dn

1

Rn dV

= Rn

∫
Dn

1

1 dV

= RnVn(1)

= αnR
n

as required.

(c) We have

Vn(R) =

∫ R

−R

∫ √
R2−x2

1

−
√

R2−x2
1

∫ √
R2−x2

1−x2
2

−
√

R2−x2
1−x2

2

· · ·
∫ √

R2−x2
1−x2

2−...−x2
n−1

−
√

R2−x2
1−x2

2−...−x2
n−1

dxn ... dx3 dx2 dx1

=

∫
D2

R

∫
Dn−2√

R2−x2
1−x2

2

dV dA

=

∫
D2

R

Vn−2

(√
R2 − x2 − y2

)
dA.

Problem 5 continued on next page. . . 6
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as required.

We have

Problem 5 continued on next page. . . 7
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Problem 5 continued on next page. . . 8
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(d)

Problem 5 continued on next page. . . 9
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(e)

Problem 5 continued on next page. . . 10
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(f)

11



MATH 222 — Homework #10
Due April 13, 2023

Maxwell Lin

Problem 1

Section 6.2, #8

Define T (u, v) =
(
u2 − v2, 2uv

)
. Let D∗ be the set of (u, v) with u2+v2 ≤ 1, u ≥ 0, v ≥ 0. Find T (D∗) = D.

Evaluate
∫ ∫

D
dx dy.

Solution
We can transform D∗ into polar coordinates with the transformation (u, v) = P (r, θ) = (r cos θ, r sin θ). We

obtain

u2 + v2 = r2 ≤ 1

u = r cos θ ≥ 0 v = r sin θ ≥ 0

and thus,

D′ =

(r, θ)

∣∣∣∣∣∣
0 ≤ r ≤ 1

0 ≤ θ ≤ π

2

 .

Therefore, to determine T (D∗) we can equivalently solve for T (P (D′)) where D′ is D∗ expressed in polar

coordinates. We have

(T ◦ P ) = ((r cos θ)2 − (r sin θ)2, 2r2 cos θ sin θ)

= r2(cos(2θ), sin(2θ)).

That is, T (D∗) = (T ◦ P )(D′) is the closed region of radius 1 from angle 0 to π—the top half of the unit

circle.

D =

{
(x, y)

∣∣∣∣∣ − 1 ≤ x ≤ 1

0 ≤ y ≤
√

1− x2

}
With this geometric picture,

∫∫
D

dx dy must be π/2. We evaluate

det(DT ) =

[
2u −2v

2v 2u

]
= 4(u2 + v2).

Since det(DT ) = 0 only at (0, 0) which is on the boundary of D∗, we can change variables as follows

∫∫
D

dx dy =

∫∫
D∗

4(u2 + v2) du dv

=

∫ π/2

0

∫ 1

0

4r2(r) dr dθ

=
π

2

as required.

1
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Problem 2

Section 6.2, #21

Integrate x2 + y2 + z2 over the cylinder x2 + y2 ≤ 2,−2 ≤ z ≤ 3.

Solution
We use cylindrical coordinates as follows∫

D

x2 + y2 + z2 dV =

∫ 2π

0

∫ √
2

0

∫ 3

−2

(r2 + z2)r dz dr dθ

=

∫ 2π

0

∫ √
2

0

5r3 +
35

3
r dr dθ

=

∫ 2π

0

50

3
dθ

=
100π

3
.

Problem 3

Section 6.2, #26

Use spherical coordinates to evaluate:∫ 3

0

∫ √
9−x2

0

∫ √
9−x2−y2

0

√
x2 + y2 + z2

1 + [x2 + y2 + z2]
2 dz dy dx

Solution ∫
D

f(x, y, z) dz dy dx =

∫ π/2

0

∫ π/2

0

∫ 3

0

ρ

1 + ρ4
ρ2 sinϕdρ dϕ dθ

=

∫ π/2

0

∫ π/2

0

∫ 3

0

ρ3 sinϕ

1 + ρ4
dρ dϕ dθ

=

∫ π/2

0

∫ π/2

0

sinϕ

4

∫ 82

1

1

u
du dϕ dθ substituting u = 1 + ρ4

=

∫ π/2

0

ln(82)

4

∫ π/2

0

(sinϕ) dϕ dθ

=

∫ π/2

0

ln 82

4
dθ

=
π ln 82

8
.

Problem 4

Section 4.3, #8

Sketch the given vector field or a small multiple of it.

F(x, y) =

(
y√

x2 + y2
,

x√
x2 + y2

)
(1)

Problem 4 continued on next page. . . 2
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Solution

Problem 5

Section 4.3, #17

Show that the given curve c(t) is a flow line of the given velocity vector field F (x, y, z).

c(t) =
(
sin t, cos t, et

)
;F(x, y, z) = (y,−x, z) (2)

Solution
We have that

c′(t) = (cos t,− sin t, et) = F (c(t)).

Thus, c(t) is a flow line of F (x, y, z).

3
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Problem 6

Section 4.3, #24

Let c(t) be a flow line of a gradient field F = −∇V where V is a C1 function Rn → R. Prove that V (c(t))

is a decreasing function of t.

Solution
Since c(t) is a flow line of F = −∇V ,

c′(t) = F (c(t)) = −∇V (c(t)).

To prove that V (c(t)) is a decreasing function of t, we must show that D(V ◦ c)(t) ≤ 0 for all t.

We have

D(V ◦ c)(t) = ∇V (c(t)) · c′(t) = ∇V (c(t)) · −∇V (c(t)) = −∥∇V (c(t))∥2 ≤ 0

as required.

Problem 7

Section 4.4, #4

Find the divergence of the vector field.

V(x, y, z) = x2i+ (x+ y)2j+ (x+ y + z)2k (3)

Solution
We have

div(V ) =
∂V1

∂x
+

∂V2

∂y
+

∂V3

∂z

= 2x+ 2(x+ y) + 2(x+ y + z)

= 6x+ 4y + 2z.

Problem 8

Section 4.4, #19

Calculate the scalar curl of the vector field.

F(x, y) = xyi+
(
x2 − y2

)
j (4)

Solution
We have

curl(F ) =
∂F2

∂x
− ∂F1

∂y

= 2x− x

= x.

4
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Problem 9

Section 4.4, #25

Suppose F : R3 → R3 is a C2 vector field. Which of the following expressions are meaningful, and which

are nonsense? For those which are meaningful, decide whether the expression defines a scalar function or a

vector field.

(a) curl(gradF)

(b) grad(curlF))

(c) div(gradF)

(d) grad(divF)

(e) curl(divF)

(f) div(curlF)

Solution

(a) Nonsense; cannot take gradient of vector-valued function.

(b) Nonsense; cannot take gradient of vector-valued function.

(c) Nonsense; cannot take gradient of vector-valued function.

(d) Meaningful; vector field.

(e) Nonsense; cannot take curl of scalar-valued function.

(f) Meaningful; scalar function.

Problem 10

Section 4.4, #27

Suppose f, g, h : R2 → R are differentiable. Show that the vector field F(x, y, z) = (f(y, z), g(x, z), h(x, y))

has zero divergence.

Solution
We have

div(F ) =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

= 0 + 0 + 0 since each Fi does not depend on xi

= 0.
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MATH 222 — Homework #11
Due April 26, 2023

Maxwell Lin

Problem 1

Section 7.2: #4

Evaluate each of the following line integrals:

(a)
∫
c
xdy − ydx, c(t) = (cos t, sin t) 0 ≤ t ≤ 2π

(b)
∫
c
xdx+ ydy, c(t) = (cosπt, sinπt), 0 ≤ t ≤ 2

(c)
∫
c
yzdx+ xzdy + xydz, where c consists of straight-line segments joining (1, 0, 0) to (0, 1, 0) to (0, 0, 1)

(d)
∫
c
x2dx− xydy + dz, where c is the parabola z = x2, y = 0 from (−1, 0, 1) to (1, 0, 1)

Solution

(a) We have

x = cos t dx = − sin t dt

y = sin t dy = cos t dt.

Thus, ∫
c

xdy − ydx =

∫ 2π

0

cos2(t) + sin2(t) dt

= 2π.

(b) We have ∫
c

xdx+ ydy =

∫ 2

0

−π cos(πt) sin(πt) + π sin(πt) cos(πt) dt

= 0.

(c) We have ∫
c

yzdx+ xzdy + xydz =

∫
c1

yzdx+ xzdy + xydz +

∫
c2

yzdx+ xzdy + xydz

where c1 parameterizes the straight-line segment joining (1, 0, 0) to (0, 1, 0) and c2 parameterizes the

straight-line-segment joining (0, 1, 0) to (0, 0, 1).

We obtain

c1 = (1− t, t, 0) t ∈ [0, 1]

c2 = (0, 1− t, t) t ∈ [0, 1].

Thus, ∫
c

yzdx+ xzdy + xydz =

∫
c1

0 + 0 + 0 +

∫
c2

0 + 0 + 0

= 0.

1



Maxwell Lin MATH 222 — Homework #11 Problem 1 (continued)

(d) We parameterize c with

c(t) = (t, 0, t2) t ∈ [−1, 1].

Thus, ∫
c

x2dx− xydy + dz =

∫ 1

−1

t2 + 2t dt

=

[
t3

3
+ t2

]1
−1

=
2

3
.

Problem 2

Section 7.2: #12

Suppose c1 and c2 are two paths with the same endpoints and F is a vector field. Show that
∫
c1

F · ds =∫
c2

F · ds is equivalent to
∫
c
F · ds = 0, where C is the closed curve obtained by first moving along c1 and

then moving along c2 in the opposite direction.

Solution
Since the oriented curve C can be obtained by moving along the curve parameterized by c1 then moving

along the curve parameterized by c2 in the opposite orientation,∫
C

F · ds =
∫
c1

F · ds−
∫
c2

F · ds = 0.

This is equivalent to ∫
c1

F · ds =
∫
c2

F · ds.

Problem 3

Section 7.3: #8

Match the following parametrizations to the surfaces shown in the figures.

(a) Φ(u, v) = (u cos v, u sin v, 4− u cos v − u sin v); u ∈ [0, 1], v ∈ [0, 2π]

(b) Φ(u, v) =
(
u cos v, u sin v, 4− u2

)
(c) Φ(u, v) =

(
u, v, 1

3 (12− 8u− 3v)
)

(d) Φ(u, v) =
((
u2 + 6u+ 11

)
cos v , u,

(
u2 + 6u+ 11

)
sin v

)

Problem 3 continued on next page. . . 2



Maxwell Lin MATH 222 — Homework #11 Problem 3 (continued)

Solution

(a) (i)

(b) (iii)

(c) (ii)

(d) (iv)

Problem 4

Section 7.3: #23

The image of the parametrization

Φ(u, v) = (x(u, v), y(u, v), z(u, v))

= ((R+ r cosu) cos v, (R+ r cosu) sin v, r sinu)

with 0 ≤ u, v ≤ 2π, 0 < r < 1, R > 1 parametrizes a torus (or doughnut) S.

(a) Show that all points in the image (x, y, z) satisfy:(√
x2 + y2 −R

)2

+ z2 = r2.

(b) Show that the image surface is regular at all points.

Solution

(a) We have(√
x2 + y2 −R

)2

+ z2 =

(√
(R+ r cosu)2 cos2 v + (R+ r cosu)2 sin2 v −R

)2

+ r2 sin2 u

= r2 cos2 u+ r2 sin2 u

= r2

Problem 4 continued on next page. . . 3



Maxwell Lin MATH 222 — Homework #11 Problem 4 (continued)

as required.

(b) To show that the image surface is regular at all points, we must show that Tu × Tv ̸= 0.

We have

Tu =

−r sinu cos v

−r sinu sin v

r cosu

 Tv =

−(R+ r cosu) sin v

(R+ r cosu) cos v

0



Tu × Tv = −r(R+ r cosu)

cosu cos vcosu sin v

sinu.


By assumption, r ̸= 0. Additionally, R + r cosu ̸= 0 since −1 < r cosu < 1 and R > 1. Therefore, we

must prove that

A =

cosu cos vcosu sin v

sinu

 ̸= 0.

For the sake of contradiction, assume that A = 0. Then, sinu = 0 which means u = kπ for k ∈ Z+∪{0}.
We also must have that

cosu cos v = cosu sin v = 0

cos v = sin v = 0 since cosu ̸= 0.

However, this equation has no solutions. Therefore, A ̸= 0 and the image surface must be regular at all

points.

Problem 5

Section 7.4: #1

Find the surface area of the unit sphere S represented parametrically by Φ : D → S ⊂ R3, where D is the

rectangle 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π and Φ is given by the equations

x = cos θ sinϕ, y = sin θ sinϕ, z = cosϕ

Note that we can represent the entire sphere parametrically, but we cannot represent it in the form z = f(x, y)

Solution
The formula for surface area is ∫∫

D

∥Tθ × Tϕ∥ dA.

We have

Tθ =

− sinϕ sin θ

sinϕ cos θ

0

 Tϕ =

cos θ cosϕsin θ cosϕ

− sinϕ


Tθ × Tϕ =

− sin2 ϕ cos θ

− sin2 ϕ sin θ

− sinϕ cosϕ



Problem 5 continued on next page. . . 4



Maxwell Lin MATH 222 — Homework #11 Problem 5 (continued)

∥Tθ × Tϕ∥ =

√
sin4 ϕ cos2 θ + sin4 ϕ sin2 θ + sin2 ϕ cos2 ϕ

=

√
sin4 ϕ+ sin2 ϕ cos2 ϕ

=

√
sin2 ϕ

= sinϕ since ϕ ∈ [0, π].

Therefore, ∫∫
D

∥Tθ × Tϕ∥ dA =

∫ π

0

∫ 2π

0

(sinϕ) dθ dϕ

= 4π.

Problem 6

Section 7.4: #4

The torus T can be represented parametrically by the function Φ : D → R3, where Φ is given by the

coordinate functions x = (R+ cosϕ) cos θ y = (R+ cosϕ) sin θ, z = sinϕ;D is the rectangle [0, 2π]× [0, 2π],

that is, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ 2π; and R > 1 is fixed (see Figure 7.4.6). Show that A(T ) = (2π)2R, first by

using formula (3) and then by using formula (6).

Solution
Formula (3) is

A(S) =

∫∫
D

√[
∂(x, y)

∂(θ, ϕ)

]2
+

[
∂(y, z)

∂(θ, ϕ)

]2
+

[
∂(x, z)

∂(θ, ϕ)

]2
dθ dϕ.

We compute as follows

∂(x, y)

∂(θ, ϕ)
=

∣∣∣∣−(R+ cosϕ) sin θ − sinϕ cos θ

(R+ cosϕ) cos θ − sinϕ sin θ

∣∣∣∣
= (R+ cosϕ) sinϕ

∂(y, z)

∂(θ, ϕ)
=

∣∣∣∣(R+ cosϕ) cos θ − sinϕ sin θ

0 cosϕ

∣∣∣∣
= (R+ cosϕ) cos θ cosϕ

∂(x, y)

∂(θ, ϕ)
=

∣∣∣∣−(R+ cosϕ) sin θ − sinϕ cos θ

0 cosϕ

∣∣∣∣
= −(R+ cosϕ) sin θ cosϕ√[

∂(x, y)

∂(θ, ϕ)

]2
+

[
∂(y, z)

∂(θ, ϕ)

]2
+

[
∂(x, z)

∂(θ, ϕ)

]2
= R+ cosϕ.

Thus, we have

A(s) =

∫ 2π

0

∫ 2π

0

(R+ cosϕ) dϕ dθ

=

∫ 2π

0

2πRdθ

= (2π)2R

Problem 6 continued on next page. . . 5
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as required.

Formula (6) is

A = 2π

∫ b

a

(
|x|

√
1 + [f ′(x)]

2

)
dx

We have

f(x) =
√
1− (x−R)2

which is the graph of the upper half cross-section of the torus we wish to revolve about the y-axis.

We compute

f ′(x) =
−(x−R)√
1− (x−R)2

and

√
1 + [f ′(x)]2 =

√
1 +

(x−R)2

1− (x−R)2

=
1√

1− (x−R)2
.

Thus, we have

2π

∫ b

a

(
|x|

√
1 + [f ′(x)]

2

)
dx = 2π

∫ R+1

R−1

x√
1− (x−R)2

dx |x| = x since R > 1

= 2π

[∫ R+1

R−1

x−R√
1− (x−R)2

dx+

∫ R+1

R−1

R√
1− (x−R)2

dx

]

We compute the first integral∫ R+1

R−1

x−R√
1− (x−R)2

dx =

∫ 0

0

du

2
√
u

substitute u = 1− (x−R)2

= 0.

We compute the second integral∫ R+1

R−1

R√
1− (x−R)2

dx = [R arcsin(x−R)]R+1
R−1

= πR.

Thus,

2π

∫ b

a

(
|x|

√
1 + [f ′(x)]

2

)
dx = 2π2R.

Multiplying by 2 (since we can only graph half of the torus cross-section), we obtain 4π2R as required.

Problem 7

Section 7.5: #9

Evaluate
∫∫

S
zdS, where S is the upper hemisphere of radius a, that is, the set of (x, y, z) with z =√

a2 − x2 − y2

Solution

Problem 7 continued on next page. . . 6
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Using spherical coordinates, we obtain the surface parametrization

Φ(θ, ϕ) = (a sinϕ cos θ, a sinϕ sin θ, a cosϕ)

where ϕ ∈ [0, π/2] and θ ∈ [0, 2π].

We have

Tθ =

−a sinϕ sin θ

a sinϕ cos θ

0

 Tϕ =

a cosϕ cos θ

a cosϕ sin θ

−a sinϕ


Tθ × Tϕ =

−a2 sin2 ϕ cos θ

−a2 sin2 ϕ sin θ

−a2 cosϕ sinϕ



∥Tθ × Tϕ∥ = a2 sinϕ.

Thus, we obtain ∫∫
S

zdS =

∫ 2π

0

∫ π/2

0

(a cosϕ)(a2 sinϕ) dϕ dθ

=

∫ 2π

0

a3

2
dθ

= πa3.

Problem 8

Section 7.5: #12

Verify that in spherical coordinates, on a sphere of radius R,

∥Tϕ ×Tθ∥ dϕ dθ = R2 sinϕdϕ dθ

Solution
We have the surface parametrization

Φ(θ, ϕ) = (R sinϕ cos θ,R sinϕ sin θ,R cosϕ)

where ϕ ∈ [0, π] and θ ∈ [0, 2π].

We compute

Tθ =

−R sinϕ sin θ

R sinϕ cos θ

0

 Tϕ =

R cosϕ cos θ

R cosϕ sin θ

−R sinϕ


Tθ × Tϕ =

−R2 sin2 ϕ cos θ

−R2 sin2 ϕ sin θ

−R2 cosϕ sinϕ



Problem 8 continued on next page. . . 7
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∥Tθ × Tϕ∥ =

√
(−R2 sin2 ϕ cos θ)2 + (−R2 sin2 ϕ sin θ)2 + (−R2 cosϕ sinϕ)2

=

√
R4 sin2 ϕ[sin2 ϕ(cos2 θ + sin2 θ) + cos2 ϕ]

=

√
R4 sin2 ϕ

= R2 sinϕ since R2 sinϕ ≥ 0

as required.

Problem 9

Section 7.6: #2

Evaluate the surface integral ∫∫
S

F · dS

where F(x, y, z) = xi + yj + z2k and S is the surface parameterized by Φ(u, v) = (2 sinu, 3 cosu, v), with

0 ≤ u ≤ 2π and 0 ≤ v ≤ 1

Solution
We have

Tu =

 2 cosu

−3 sinu

0

 Tv =

00
1


Tu × Tv =

−3 sinu

−2 cosu

0


(Tu × Tv) · F =

−3 sinu

−2 cosu

0

 ·

2 sinu3 cosu

v2

 = −6.

Thus, we obtain ∫∫
S

F · dS =

∫ 2π

0

∫ 1

0

−6 dv du

= −12π.

Problem 10

Section 7.6: #7

Let S be the closed surface that consists of the hemisphere x2 + y2 + z2 = 1, z ≥ 0, and its base x2 + y2 ≤
1, z = 0. Let E be the electric field defined by E(x, y, z) = 2xi+ 2yj+ 2zk. Find the electric flux across S.

(HINT: Break S into two pieces S1 and S2 and evaluate
∫∫

S1
E · dS and

∫∫
S2

E · dS separately.)

Solution
The electric flux across S is ∫∫

S

E · dS =

∫∫
S1

E · dS +

∫∫
S2

E · dS

Problem 10 continued on next page. . . 8
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where S1 is the hemisphere and S2 is the base, both with unit normals that face outwards. We parametrize

S1 with

Φ1(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)

where ϕ ∈ [0, π/2] and θ ∈ [0, 2π].

From Problem 7, we know that

Tϕ × Tθ =

sin2 ϕ cos θ

sin2 ϕ sin θ

cosϕ sinϕ

 .

Thus,

E · (Tϕ × Tθ) =

2 sinϕ cos θ

2 sinϕ sin θ

2 cosϕ

 ·

sin2 ϕ cos θ

sin2 ϕ sin θ

cosϕ sinϕ


= 2 sinϕ.

∫∫
S1

E · dS =

∫ 2π

0

∫ π/2

0

(2 sinϕ) dϕ dθ

= 4π.

Now we parameterize S2 by

Φ2(r, θ) = (r cos θ, r sin θ, 0)

where r ∈ [0, 1] and θ ∈ [0, 2π]. We obtain

Tr =

cos θsin θ

0

 Tθ =

−r sin θ

r cos θ

0


Tθ × Tr =

 0

0

−r

 .

Thus,

E · (Tθ × Tr) =

2r cos θ2r sin θ

0

 ·

 0

0

−r


= 0.

Therefore, ∫∫
S2

E · dS = 0

and ∫∫
S

E · dS = 4π.

9


