
Browsing without Third-Party Cookies:
What Do You See?

Maxwell Lin
Duke University

Shihan Lin
Duke University

Helen Wu
Vanderbilt University

Karen Wang
Duke Kunshan University

Xiaowei Yang
Duke University

ABSTRACT
Web cookies are often used for privacy-invasive behavior
tracking. Previous studies have proposed methods to auto-
matically disable privacy-invasive cookies, either by interact-
ingwith cookie notices or filtering out cookies at the browser-
level. In this study, we advocate for complete third-party
cookieless browsing. We develop a framework to analyze the
impact of removing third-party cookies on website render-
ing and implement this framework in a Selenium-based web
crawler to measure the top 10,000 Tranco domains. We find
that disabling third-party cookies has no significant effect on
website appearance, text, images, or links. This validates the
industry-wide shift towards cookieless browsing as a way
to protect user privacy without compromising on the user
experience.

1 INTRODUCTION
Websites use web cookies to record stateful information in
a browsing session. While some cookies are necessary for
websites to work properly (e.g., authentication cookies), the
majority of cookies are used for user tracking and adver-
tising [21]. In a web measurement study, Englehardt et al.
found that an adversary can reconstruct 62-73% of a typical
user’s browsing history using third-party cookies [13].

Because of general privacy concerns, many governments
have enacted regulations that require websites to implement
cookie notices. These cookie notices allow users to consent to
or opt out of the use of unnecessary cookies. For example, the
California Consumer Privacy Act (CCPA) [8] is a regulation
that requires websites to provide a clear opt-out mechanism
for their users. In the European Union, the General Data Pro-
tection Regulation (GDPR) [15] and ePrivacy Directive [14]
requires websites to obtain specific, informed, and unam-
biguous user consent before accessing or storing any user
data unessential to website function. Previous studies have
measured the effect of privacy regulations on the cookie
landscape. Degeling et al. discovered that the use of cookie
notices increased by 16% in EU member states after GDPR
went into effect [12]. Furthermore, cookie regulations have
given rise to Consent Management Platforms (CMPs) which
provide “consent as a service” solutions to websites. Due to

their ease of use, many websites use CMPs to implement
their cookie notices as well as to manage and disseminate
user consent to third parties.
Although cookie notices are intended to give users more

control over their privacy, 88% of cookie notices incorporate
design techniques that hinder the ability of users to select
privacy-protective options [19]. In a user study by Habib
et al., it was found that 73% of participants opted for the
most permissive cookie settings and only 45% of participants
chose the settings that genuinely reflected their desired level
of consent [19]. This result indicates that cookie notices are
an unreliable way for users to choose their desirable privacy
settings.

As a potential solution, notice-centric methods have been
proposed to automate user-interaction with cookie notices.
For example, Khandelwal et al. developed CookieEnforcer, a
browser extension which can automatically disable all un-
necessary cookies with 94% accuracy [23]. However, notice-
centric methods assume that websites will honor the choices
that users make, which may not be the case in practice.
In a preliminary study of 255 websites that implemented

cookie notices, we found that 39% of them do not respect
the user’s choice and continue to use tracking cookies even
after the user opts out in the provided cookie notice (see
Figure 1). Even websites that employ CMPs violate cookie
regulations. We crawled 118 websites that use OneTrust, the
most popular CMP, and we found that 58% use tracking
cookies even when they are disabled via the OneTrust API.
Lastly, by design, notice-centric methods cannot work if the
website does not provide a cookie notice in the first place. In
a large scale study of over 17,000 websites, Kampanos et al.
found that less than 50% of websites show a cookie notice to
the user [22]. Therefore, notice-centric cookie enforcement
will be unsuccessful on a majority of websites.

Due to limitations in the notice-centric approach, we pro-
pose to directly intercept cookies at the browser level. We
seek to create a policy framework that enables a user to
decide whether a cookie should be enabled without depend-
ing on whether a cookie notice exists on the website at all.
For example, a privacy-conscious user may want to enable
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only strictly necessary cookies. However, this approach re-
quires a cookie classifier, and as we explain in Section 2.0.2,
categorizing cookies by function is difficult.

Partly due to the abovementioned challenges of disabling
all privacy-invasive cookies, a recent trend acrossweb browsers
has been to disable all third-party cookies. This approach
is easy to implement and requires little maintenance (com-
pared to categorizing cookies by functions and disabling
privacy-invasive ones). Google Chrome, the most popular
web browser, is following this approach and will deprecate
all third-party cookies in early 2025 [18]. Other popular
browsers such as Firefox [3] and Safari [1] already block
many third-party cookies by default. We refer to this ap-
proach as cookieless browsing.

While cookieless browsing certainly limits websites from
tracking users, it remains unclear whether disabling all third-
party cookies impacts the user experience of websites. This
ambiguity motivates our present study, where we design and
implement a framework to rigorously assess the influence
of cookieless browsing on key website operations, such as
layout rendering, text/image content, and interactivity. We
seek to answer the question: How does third-party cookieless
browsing affect the way websites are displayed to users?

1.0.1 Contributions. We design a framework to measure
how removing third-party cookies impacts website render-
ing. To our knowledge, this is the first large-scale study
analyzing this behavior. We implement this framework us-
ing a Selenium-based web crawler and deploy it across the
top 10,000 Tranco domains. By analyzing extracted features
(screenshots, text, images, and links) across different crawl
groups, we find that the absence of third-party cookies does
not significantly affect the rendering of websites. More than
90% of the domains showed minimal changes in website ren-
dering, suggesting that cookieless browsing will not degrade
user experience. Lastly, we release our implementation and
results for reproducibility and further analysis.

1.0.2 Organization. The remainder of the paper is struc-
tured as follows. Section 2 evaluates related studies. Section 3
describes our framework and implementation considerations.
Section 4 describes our approach to comparing extracted fea-
tures. Section 5 presents the results of our large-scale crawl.
Section 6 evaluates our study and outlines future work. Sec-
tion 7 draws conclusions.

2 BACKGROUND & RELATEDWORK
In this section, we provide definitions and evaluate related
studies.

2.0.1 ICC UK Cookie Categories. There are four different
types of cookies defined by the International Chamber of
Commerce UK [10]:

Figure 1: Cookie-Script Categorization for Differ-
ent Interaction Modes. Cookies were collected from
255 websites that implemented cookie notices. Ban-
nerClick [27] was used to click the accept and reject
buttons. Note that Cookie-Script was unable to clas-
sify the vast majority of cookies collected; there are
roughly ten times more unclassified cookies than any
of the four categorized cookie types. (Most websites
had zero functionality cookies; outliers are shown as
diamonds.)

(1) StrictlyNecessaryCookies: Enable users tomove around
the website and use requested features, such as accessing
secure areas of the website or adding items to a shopping
cart.

(2) Performance Cookies: Collect anonymized informa-
tion about how visitors use a website (e.g., popular pages,
error logs).

(3) Functionality Cookies: Remember choices that users
make (such as username, language, or region) to provide
personalized features.

(4) Tracking Cookies: Collect information about users’
browsing habits to deliver relevant advertisements.

2.0.2 Automated Cookie Classification. There aremany cook-
ie databases that attempt to map cookies to their ICC UK cat-
egory. For example, when given a website, Cookie-Script [11]
will categorize all present cookies as either one of the four
ICC UK categories or the unclassified category if no database
entry is found. In a preliminary study, we crawled 255 web-
sites and categorized collected cookies using Cookie-Script.
We found that the vast majority of cookies were unable to be
classified (see Figure 1). Due to the ever-changing nature of
the web, cookie databases will never be fully comprehensive.

A potential solution to this problem is to train a machine
learning classifier. Hu et al. [21] introduced CookieMonster,
a machine learning model capable of categorizing cookies
with 94% accuracy. Bollinger et al. [6] developed CookieBlock,
a machine-learning classifier and browser extension which
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automatically blocks privacy-invasive cookies with 90% ac-
curacy. Unfortunately, machine-learning models are never
completely accurate, and such methods may still be unsatis-
factory to a particularly privacy-conscious user.

3 WEB CRAWLER ARCHITECTURE
Our crawler uses Selenium [28] to drive a headless Firefox
instance. We deploy our crawler on the top 10,000 domains of
the KJ2GW Tranco [24] list generated on 18 February 2024. 1
The total running time across all jobs was 241 days; the
median time to crawl one domainwas 33minutes. If a domain
took more than 60 minutes, we terminated the process and
moved on to the next domain.

3.1 Domain to URL Resolution
We first resolve the apex domain obtained from Tranco
to an accessible URL. An apex domain is a two-level do-
main [20], e.g., example.com. To resolve the apex domain,
we alternate between the http and https protocols in ad-
dition to optionally prepending the www subdomain. For ex-
ample, to resolve the example.com domain, we attempt nav-
igation to https://example.com, https://www.example.com,
http://example.com, and http://www.example.com. Domain
to URL resolution is successful if we can retrieve a web page
with clickable elements (see Section 3.3).

3.2 Crawl Groups
To measure the effects of third-party cookies on website
behavior, we crawl each domain three separate times corre-
sponding to the following groups:
(1) Baseline:We generate and save a length 5 clickstream

with all cookies enabled. See Section 3.3.
(2) Control:We traverse the generated clickstream under

the same conditions as the baseline group. See Section 3.4.
(3) Experimental:We traverse the generated clickstream

with all third-party cookies disabled. See Section 3.4.
A unique Firefox profile is created for each group to iso-

late stateful information such as cookies between browsing
sessions.

The motivation behind these three groups is as follows: if
we observe a significant difference between the baseline and
experimental groups, it is possible that the website requires
the use of cookies. However, we cannot conclude that the
experimental condition caused this change in behavior since
the content of some websites can change naturally upon
page reload (e.g., social media websites). To take this into
account, we crawl each website twice without applying the
experimental condition (i.e., the baseline and control groups).
If these two groups are similar but the experimental group

1Available at https://tranco-list.eu/list/KJ2GW.

Figure 2: Clickstream Length across Crawl Groups.
Clickstream generation occurs in the baseline group
while clickstream traversal occurs in the control and
experimental groups. The average generated click-
stream length is 4.5, while the average traversed click-
stream length is 3.4. The success rate of generating a 5
length clickstream is about 0.9, while the success rate
of traversing a 5 length clickstream is only about 0.6.

is significantly different, then we can conclude that the ex-
perimental condition (disabling third-party cookies) likely
caused the observed change in website behavior.

3.3 Clickstream Generation
A length 𝑘 clickstream is a list of 𝑘 actions sampled from a
set of clickable elements. We define a clickable element as
an HTML element that satisfies at least one of the following
criteria:
• Button: Elements with a <button> tag. 2
• Link: Elements with an <a> tag. 3
• Onclick: Elements with an onclick event attribute. 4
• Pointer: Elements with a "pointer" cursor style. 5

See Figure 3 for the percentage of clickable element types
encountered during clickstream generation.
After navigating to the landing page, we construct a set

of clickable elements. We sample uniformly at random from
this set until a successful click is made. This action is then
appended to the current clickstream and the set of clickable
elements is reconstructed. This process continues until the
2See https://developer.mozilla.org/en-US/docs/Web/HTML/Element/
button.
3See https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a.
4See https://developer.mozilla.org/en-US/docs/Web/API/Element/click_
event.
5See https://developer.mozilla.org/en-US/docs/Web/CSS/cursor.
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Figure 3: Clickable Elements. The first plot displays the
percentage of clickable elements encountered during
clickstream generation. The second plot displays the
percentage of clickable elements that failed during
clickstream traversal. A clickable element fails when
its CSS selector is unable to be resolved.

desired clickstream length is generated. If the set of clickable
elements is ever empty or we navigate to a different domain,
the clickstream prematurely ends.

Ideally, the clickstream length should be long enough such
that the inner pages of the website are thoroughly explored.
However, longer clickstreams become more difficult to fully
traverse as more actions must be successfully completed se-
quentially. By analyzing the browsing data of 2.5M users
across 760 websites, Lehmann et al. found that users only
view 2.36 pages of a website on average [25]. Xing et al. ex-
amined how users navigate search engine results and found
that the majority of users conduct less than 2 clicks per ses-
sion [31]. Thus, we selected a clickstream length of 5 which
we found to achieve a good balance between inner page
exploration and traversal success.

In our implementation, clickstream actions are saved using
a unique CSS selector generated by the finder [26] JavaScript
library. According to an independent benchmark [17], finder
was able to consistently generate the shortest selectors com-
pared to 12 other libraries. Shorter selectors are more reliable
across page visits, resulting in more successful clickstream
traversals.

3.4 Clickstream Traversal
After navigating to the landing page, we execute each action
in the clickstream sequentially. Sometimes, the CSS selector
originally generated cannot be resolved and we are unable to
fully traverse the clickstream. Figure 2 presents the normal-
ized histogram of clickstream lengths across crawl groups.
Note that making the clickstream longer reduces the number
of successful full-length clickstream traversals. See Figure 3
for the percentage of clickable element types that failed dur-
ing traversal.

3.5 Extracted Features
After navigating to the landing page and after each action in
a clickstream, we extract the following features:
(1) Screenshot: We take a screenshot of the viewport af-

ter scrolling to the top of the page. This ensures that
screenshots are consistently aligned.

(2) Image Shingles:We also convert the screenshot to an
image shingle frequency vector (see Section 3.5.1).

(3) Inner Text: The innerText of the <body> element 6

extracted as a word frequency vector.
(4) Images: The src of all <img> elements 7 extracted as a

frequency vector.
(5) Links: The href of all links 8 present extracted as a

frequency vector.
For each domain, we attempt to collect up to 50 comparable

sets of features.

3.5.1 Image Shingle Extraction. Image shingling, proposed
by Anderson et al., [4] is based on the notion of shingling
from the text similarity literature. First, we divide each im-
age into fixed sized chunks in memory. Like Anderson et
al., we found that an image chunk size of 40x40 pixels was
an effective trade-off between granularity and shingling per-
formance. Each chunk is then hashed using MD5 to form
an image shingle. Lastly, we extract the frequency vector of
image shingles.

4 ANALYSIS
4.1 Screenshot Comparison
To compare baseline, control, and experimental screenshots
(Feature 1), we use Algorithm 1 to obtain a difference Δ ∈
[0, 1] that accounts for dynamic content.
Concretely, we split each crawl group screenshot into

40x40 pixel chunks. Similar to image shingling, we found
that this chunk size offers good balance between both pre-
cision and performance. We filter out all chunks that differ
between the baseline and control group to ensure that any
naturally occurring differences are excluded. For all remain-
ing chunks, we compute the proportion that differ between
the baseline and experimental group. This allows us to only
measure differences that occur due to the experimental con-
dition. Note that if baseline and control are identical, we
simply return the percent difference between baseline and
experimental.
If there are no chunks remaining after the filter (i.e., the

baseline and control screenshots are completely different),
then we skip the comparison.

6See https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/
innerText.
7See https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img.
8See https://developer.mozilla.org/en-US/docs/Web/API/Document/links.
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Algorithm 1 BCE Screenshot Difference
1: ⊲ chunk returns a list of chunks given a baseline screen-

shot, a control screenshot, and an experimental screen-
shot.

2: initialize chunks← chunk(screenshots to compare)
3:
4: initialize matches← 0
5: initialize total← 0
6: ⊲ Loop over crawl group chunks in parallel.
7: for each (baseline, control, experimental) in chunks do
8: if baseline == control then
9: total← total + 1
10: if baseline == experimental then
11: matches← matches + 1
12:
13: ⊲ Return a difference Δ ∈ [0, 1].
14: return 1 −

(
matches
total

)
4.2 Frequency Vector Comparison
Extracted frequency vectors (Features 2-5) are compared
using the Jaccard distance formula. If we let 𝐴 and 𝐵 be the
multisets of two frequency vectors, we define the Jaccard
distance as

𝐽 (𝐴, 𝐵) := 1 − |𝐴 ∩ 𝐵 ||𝐴 ∪ 𝐵 | ∈ [0, 1] . (1)

If |𝐴 ∪ 𝐵 | = 0, i.e., 𝐴 and 𝐵 are both empty, then we define
𝐽 (𝐴, 𝐵) := 0. In other words, we consider two empty sets to
be identical.
We compare the extracted features using a difference in

difference approach. The difference in difference (DiD) com-
putes the following

DiD := 𝐽 (𝐵, 𝐸) − 𝐽 (𝐵,𝐶) ∈ [−1, 1] (2)

where 𝐵, 𝐶 , 𝐸 denote a frequency vector from the baseline,
control, and experimental groups respectively.
If the DiD is small, then the experimental condition did

not have a substantial effect since 𝐽 (𝐵, 𝐸) ≈ 𝐽 (𝐵,𝐶).

5 RESULTS
Out of the 10,000 input Tranco domains, 1,897 domains were
unable to be resolved to a URL. Through manual inspection,
we found that many of these domains (e.g., akamai.net)
belong to content delivery networks. After filtering out other
problematic domains (e.g. domains which hang our crawler),
we arrive at a final list of 7,490 successfully crawled domains.

We first compare screenshots using Algorithm 1. The dis-
tribution of differences is plotted as a CDF in Figure 4. We
find that more than 90% of domains exhibit less than a 10%

Figure 4: CDF of BCE Screenshot Differences. The
BCE screenshot difference statistic is outlined in Algo-
rithm 1.

screenshot difference when cookies are disabled. These re-
sults suggest that disabling all third-party cookies generally
does not not affect the screenshots of websites.
We also compare the extracted frequency vectors. CDFs

of frequency vector DiDs are plotted in Figure 5 and the
respective histograms are plotted in Figure 6. The distribu-
tion is concentrated and symmetric at 0 with a low standard
deviation. These results suggest that disabling all third-party
cookies generally does not affect the content or layout of a
website.

6 DISCUSSION
In our study, we modeled user web browsing behavior as
a sequence of clickstreams. This approach allowed for the
measurement of the inner pages of a website, a consideration
that previous studies [5] have emphasized. This approach
also facilitated the creation of multiple crawl groups that
differed only in their experimental condition (i.e., whether
cookies were enabled or disabled). However, there are two
important limitations of this clickstream model:
(1) Dynamic content: Because many webpages are dy-

namic, generated clickstreams may not be stable across
time. Therefore, our dataset is biased towards static inner
pages which may cause us to underestimate the impact
cookies have on website behavior.

(2) Random traversal: To generate a clickstream, we re-
peatedly sample uniformly at random from the current
set of clickable elements. However, random traversal
likely does not capture the intricacies of real-user behav-
ior. Consider a typical e-commercewebsite with 100 click-
able elements per page. For a length 5 clickstream, the
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Figure 5: CDF of Frequency Vector DiDs. The difference in difference statistic is defined in Equation 2. The
distribution is concentrated and symmetric at 0.

Figure 6: Histogram of Frequency Vector DiDs. The difference in difference statistic is defined in Equation 2. A
fitted Gaussian is overlayed over each histogram. For all features, the fitted mean is 0.

state space size can be upper bounded by 1005. Clearly,
it is computationally infeasible to exhaustively explore
this search space. To model purposeful web browsing,
we must use a more targeted clickstream generation
method. Unfortunately, generating targeted clickstreams
is a difficult problem. White et al. has shown that there is
high variability in the behavior of search engine users in
their issued query, clicked result, and post-query brows-
ing [29, 30]. This implies that there is no "average" user
that can be modeled.

Our results suggest that third-party cookies do not have a
significant effect on the behavior of most websites. Instead
of relying on notice-centric cookie enforcement or cookie
blocklists, a user can simply disable all third-party cookies at
the browser-level without consequences for most websites.

This provides validation to the industry-wide shift towards
cookieless browsing. Users will likely observe little to no
change as browsers begin to disable all third-party cookies
by default. On the other hand, advertisers will either need
to adopt cookie substitutions (such as the APIs proposed in
Google’s Privacy Sandbox) or move back to non-targeted
advertising [2].

As the majority of third-party cookies are tracking cook-
ies [7], disabling all third-party cookies will certainly im-
prove user privacy. However, domains can still track users
across websites using only first-party cookies, through tech-
niques such as cookie respawning [16] or first-party cookie
leakage [9]. Thus, a natural extension of the present study
is to examine how disabling all web cookies affects website
behavior.

7 CONCLUSION
In this study, we develop a framework to determine whether
a given website requires the use of cookies. Specifically, we
devise different groups which crawl the same clickstream
with varying experimental conditions. We implement this
framework in a Selenium-based web crawler and deploy it
across the top 10,000 Tranco domains. By comparing ex-
tracted screenshots, text, images, and links, we conclude that
third-party cookies do not have an observable impact on the
vast majority of domains.
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A APPENDIX
A.1 Ethics
This work does not raise any ethical issues.

A.2 Screenshot Examples
The following figures provide some examples of dynamic
content and screenshot comparisons.

Figure 7: The website youtube.com displays dynamic
content. These two screenshots show how youtube.com
changes between page reloads.

(a) Baseline

(b) Experimental

Figure 8: Without cookies, sciencemag.org displays an
error message. There is a 0.85 jaccard distance between
the image shingles of these two screenshots.

(a) Baseline

(b) Experimental

Figure 9: Without cookies, userapi.com is unable to
change languages. There is a 0.35 jaccard distance be-
tween the image shingles of these two screenshots.
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